Home
Class 12
MATHS
IfIn=int0^1(dx)/((1+x^2)^n),w h e r en i...

`IfI_n=int_0^1(dx)/((1+x^2)^n),w h e r en in N ,` which of the following statements hold good? `2nI_(n+1)=2^(-n)+(2n-1)I_n` `I_2=pi/8+1/4` (c) `I_2=pi/8-1/4` `I_3=(3pi)/(32)+1/4`

A

`2n 1 _( n+1) =2 ^(-n) + (2n -1) 1 _(n)`

B

`1 _(2) =pi/8 + 1/4`

C

` 1_(2) = pi/8 -1/4`

D

`1_(3) = (pi)/(16) - (5)/(48)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -3|55 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-I|15 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -2 (LEVEL-I)|97 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n)), where n in N, which of the following statements hold good? 2nI_(n+1)=2^(-n)+(2n-1)I_(n)I_(2)=(pi)/(8)+(1)/(4)(c)I_(2)=(pi)/(8)-(1)/(4)I_(3)=(3 pi)/(32)+(1)/(4)

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If I_n=int_0^(sqrt(3))(dx)/(1+x^n),(n=1,2,3. .), then find the value of ("lim")_(nvecoo)I_ndot (a)0 (b) 1 (c) 2 (d) 1/2

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)