Home
Class 12
MATHS
Choose the correct answerint1^sqrt(3) (d...

Choose the correct answer`int_1^sqrt(3) (dx)/(1+x^2)`equals
(A) `pi/3`
(B) `(2pi)/3`
(C) `pi/6`
(D) `pi/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \] ### Step 2: Find the antiderivative The antiderivative of \( \frac{1}{1+x^2} \) is: \[ \tan^{-1}(x) \] ### Step 3: Apply the limits of integration Now, we will apply the limits from 1 to \( \sqrt{3} \): \[ \left[ \tan^{-1}(x) \right]_1^{\sqrt{3}} = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) \] ### Step 4: Evaluate \( \tan^{-1}(\sqrt{3}) \) and \( \tan^{-1}(1) \) We know: - \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \) (since \( \tan(\frac{\pi}{3}) = \sqrt{3} \)) - \( \tan^{-1}(1) = \frac{\pi}{4} \) (since \( \tan(\frac{\pi}{4}) = 1 \)) ### Step 5: Substitute the values Now substituting these values back into the expression: \[ \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) = \frac{\pi}{3} - \frac{\pi}{4} \] ### Step 6: Find a common denominator To subtract these fractions, we need a common denominator. The least common multiple of 3 and 4 is 12: \[ \frac{\pi}{3} = \frac{4\pi}{12}, \quad \frac{\pi}{4} = \frac{3\pi}{12} \] ### Step 7: Perform the subtraction Now we can subtract: \[ \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{(4\pi - 3\pi)}{12} = \frac{\pi}{12} \] ### Conclusion Thus, the value of the integral is: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} = \frac{\pi}{12} \] ### Final Answer The correct answer is \( \frac{\pi}{12} \), which corresponds to option (D). ---

To solve the integral \( \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.6|24 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.10|10 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int_1^(sqrt(3))1/(1+x^2)dx is equal to pi/(12) b. pi/4 c. pi/6 d. pi/3

Choose the correct answer int_(0)^((2)/(3))(dx)/(4+9x^(2))(A)(pi)/(6)(B)(pi)/(12)(C)(pi)/(24)(D)(pi)/(4)

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

int_0^1sqrt((1-x)/(1+x))dx= (pi)/2 (b) (pi)/2-1 (c) (pi)/2+1 (d) pi+1

int_-1^1 sin^-1(x/(1+x^2))dx= (A) pi/4 (B) pi/2 (C) pi (D) 0

Mark the correct alternative in each of the following: int_0^1sqrt(x(1-x))dx equals pi//2 (b) pi//4 (c) pi//6 (d) pi//8

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

The value of int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx= (A) pi/2 (B) 2pi (C) pi (D) pi/4