Home
Class 12
MATHS
Find the eccentricity of a hyperbola who...

Find the eccentricity of a hyperbola whose conjugate axis and latus rectum are equal.

Text Solution

Verified by Experts

The correct Answer is:
`(e)=sqrt(1+(b^(2))/(a^(2)))=sqrt2" "[:'a=b]`
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2018|30 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2019 (HS (XI) 2019) (GROUP -A)|10 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise HS (XI) AND WBJEE 2018 (GROUP - C)|17 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion-Reason Type)|2 Videos
  • ORDER AND DEGREE OF DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (E Assertion - Reasion Type )|2 Videos

Similar Questions

Explore conceptually related problems

The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci , is

The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : (1) 4/3 (2) 4/(sqrt(3)) (3) 2/(sqrt(3)) (4) sqrt(3)

Find the eccentricity of the hyperbola whose latusrectum and transverse axis are of same length.

Taking major and minor axes as x and y -axes respectively, find the equation of the ellipse whose lengths of minor axis and latus rectum are 4 and 2 .

Find the equation of the hyperbola whose axis are the axis of coordinates and eccentricity is sqrt((3)/(2)) and length of latus rectum is sqrt(2) .

Find the equation of the hyperbola, whose axes are axes of coordinates and lengths of conjugate axis and latus rectum are 2 (8)/(3) respectively.

Find the equation of hyperbola and length of its latus rectum, whose vertices are (9,2),(1,2) and the ecentricity is (5)/(4) .

Find the eccentricity, and the length of latus rectum of the hyperbola x^(2) - y^(2) = 2

Find the eccentricity of the ellipse if the length of rectum is equal to half the minor axis of the ellipse .

Find the equation of the hyperbola whose axes are the axes of coordinates and length of conjugate axis is 5 and the distance between the foci is 13.