Home
Class 12
MATHS
If |a^2+lambda^2a b+clambdac a-blambdaa ...

If `|a^2+lambda^2a b+clambdac a-blambdaa b-clambdab^2+lambda^2b c+a c a+blambdab c-alambdac^2+lambda^2||lambdac-b-clambdaa b-alambda|=(1+a^2+b^2+c^2)^3` , then he value of `lambda` is `8` b. `27` c. `1` d. `-1`

Text Solution

Verified by Experts

The correct Answer is:
1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I) Fill in the blanks|4 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DETERMINANT

    FIITJEE|Exercise EXERCIESE 8|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

|[a^(2)+lambda^(2),ab+c lambda,ca-b lambdaab-c lambda,b^(2)+lambda^(2),bc+aca+b lambda,bc-a lambda,c^(2)+lambda^(2) then he value of lambda is 8 b.27, c.1 d.-1=(1+a^(2)+b^(2)+c^(2))^(3)

if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find the value of lambda

Knowledge Check

  • If the vectors a+ lambda b+3c, -2a+3b-4c and a-3b+5c are coplanar, then the value of lambda is

    A
    2
    B
    `-1`
    C
    1
    D
    `-2`
  • If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

    A
    `1//3`
    B
    `1//3`
    C
    `2//3`
    D
    `2//3`
  • Similar Questions

    Explore conceptually related problems

    If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.

    If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

    If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

    det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

    If the vectors a+lambda b+3c,-2a+3b-4c and a-3b+5c are coplanar and a,b,c are non-coplanar,then the value of lambda is

    If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=