Home
Class 12
MATHS
If A ,B and C are the angles of an equil...

If A ,B and C are the angles of an equilateral triangle, then the value of
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}|` is ...........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we will follow a systematic approach. Given the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix} \] ### Step 1: Recognize the angles of the equilateral triangle Since A, B, and C are the angles of an equilateral triangle, we have: \[ A = B = C = \frac{\pi}{3} \] ### Step 2: Substitute the values of sin A, sin B, and sin C Using the fact that \(\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\), we can substitute: \[ \sin A = \sin B = \sin C = \frac{\sqrt{3}}{2} \] ### Step 3: Substitute the values into the determinant Now we can substitute these values into the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2}\right)^2 & \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2}\right)^2 & \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2}\right)^2 \end{vmatrix} \] Calculating \(\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}\), we have: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} + \frac{3}{4} & \frac{\sqrt{3}}{2} + \frac{3}{4} & \frac{\sqrt{3}}{2} + \frac{3}{4} \end{vmatrix} \] ### Step 4: Simplify the determinant Notice that all rows are proportional. The second and third rows are identical: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} & 1 + \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} + \frac{3}{4} & \frac{\sqrt{3}}{2} + \frac{3}{4} & \frac{\sqrt{3}}{2} + \frac{3}{4} \end{vmatrix} \] ### Step 5: Conclude the determinant value Since the second and third rows are identical, the determinant evaluates to zero: \[ D = 0 \] Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I|8 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

If A,B,C are the angles of a triangle, the system of equations (sinA)x+y+z=cosA , x+(sinB)y+z=cosB , x+y+(sinC)z=1-cosC has

In triangleABC, a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=

If sinA/sinB=sin(A-C)/sin(C-B) then