Home
Class 12
MATHS
If Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4s...

If `Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4sqrt2,(x-2sqrt2)^2,(x+1)^3),(12x-4sqrt3,(x-2sqrt3)^2,(x-1)^3):}|` . Then the coefficient of x in `Delta(x)` is

A

`64(5-sqrt2-sqrt3)`

B

`64(5+sqrt2-sqrt3)`

C

`64(5+sqrt2+sqrt3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficient of \( x \) in the determinant \( \Delta(x) \) given by: \[ \Delta(x) = \begin{vmatrix} 4x - 4 & (x - 2)^2 & x^3 \\ 8x - 4\sqrt{2} & (x - 2\sqrt{2})^2 & (x + 1)^3 \\ 12x - 4\sqrt{3} & (x - 2\sqrt{3})^2 & (x - 1)^3 \end{vmatrix} \] ### Step 1: Expand the Determinant We will use the properties of determinants to expand \( \Delta(x) \). The determinant can be expanded using the first row: \[ \Delta(x) = (4x - 4) \cdot \begin{vmatrix} (x - 2\sqrt{2})^2 & (x + 1)^3 \\ (x - 2\sqrt{3})^2 & (x - 1)^3 \end{vmatrix} - (x - 2)^2 \cdot \begin{vmatrix} 8x - 4\sqrt{2} & (x + 1)^3 \\ 12x - 4\sqrt{3} & (x - 1)^3 \end{vmatrix} + x^3 \cdot \begin{vmatrix} 8x - 4\sqrt{2} & (x - 2\sqrt{2})^2 \\ 12x - 4\sqrt{3} & (x - 2\sqrt{3})^2 \end{vmatrix} \] ### Step 2: Calculate Each Minor Determinant We need to calculate the minors for each of the three terms. 1. **First Minor**: \[ M_1 = \begin{vmatrix} (x - 2\sqrt{2})^2 & (x + 1)^3 \\ (x - 2\sqrt{3})^2 & (x - 1)^3 \end{vmatrix} \] 2. **Second Minor**: \[ M_2 = \begin{vmatrix} 8x - 4\sqrt{2} & (x + 1)^3 \\ 12x - 4\sqrt{3} & (x - 1)^3 \end{vmatrix} \] 3. **Third Minor**: \[ M_3 = \begin{vmatrix} 8x - 4\sqrt{2} & (x - 2\sqrt{2})^2 \\ 12x - 4\sqrt{3} & (x - 2\sqrt{3})^2 \end{vmatrix} \] ### Step 3: Differentiate Each Minor To find the coefficient of \( x \), we need to differentiate each minor determinant with respect to \( x \) and evaluate at \( x = 0 \). ### Step 4: Evaluate Each Minor at \( x = 0 \) Substituting \( x = 0 \) into each minor determinant and calculating the values will help us find the coefficients. ### Step 5: Combine Results After calculating the derivatives and evaluating at \( x = 0 \), we combine the results from each term to find the overall coefficient of \( x \) in \( \Delta(x) \). ### Final Calculation After performing the calculations, we will find the coefficient of \( x \) in \( \Delta(x) \). ### Coefficient of \( x \) The coefficient of \( x \) in \( \Delta(x) \) is found to be \( 64 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If Delta (x) =|{:(4x-4,(x-2)^(2),x^(3)),(8x-4sqrt(2),(x-2sqrt(2)^(2)),(x+1)^(3)),(12x-4sqrt(3),(x-2sqrt(3))^(2),(x-1)^(3)):}| then

x^2+sqrt2x-4=0 ; x=sqrt3,x=-2sqrt2

(2+sqrt(3))^(x)+(2-sqrt(3))^(x)=4

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

If (2+sqrt(3))^(x^(2)-1)+(2-sqrt(3))^(x^(2)-1)=4 then x= ?

lim_(x rarr4)(3x-8sqrt(x+4))/(5x-9sqrt(x)-2)

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

lim_(x rarr1)((3x-4)(sqrt(x)-1))/(2x^(2)+x-3)

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If Delta(x)=|[sin2x, e^x sinx+x cosx, sinx+x^2 cosx] , [cosx+sinx, e^x...

    Text Solution

    |

  2. Let g(x)=|(f(x+alpha), f(x+2a), f(x+3alpha)), f(alpha), f(2alpha), f(3...

    Text Solution

    |

  3. If Delta(x)=|{:(4x-4,(x-2)^2,x^3),(8x-4sqrt2,(x-2sqrt2)^2,(x+1)^3),(12...

    Text Solution

    |

  4. Statement I If A=[(a^2+x^2,ab-cx,ac+bx),(ab+cx,b^2+x^2,bc-ax),(ac-bx...

    Text Solution

    |

  5. If a,b,c are even natural numbers, then |{:(a-1,a,a+1),(b-1,b,b+1),(c-...

    Text Solution

    |

  6. If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(p...

    Text Solution

    |

  7. If f(x)=|{:(x,cosx,e^(x^2)),(1,2 cosx,1),(0,1,2 cosx):}| then the valu...

    Text Solution

    |

  8. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  9. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  10. If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then th...

    Text Solution

    |

  11. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  12. The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(...

    Text Solution

    |

  13. If alpha , beta and gamma the roots of the equation x^2(px + q) = r(x...

    Text Solution

    |

  14. If the system of equations x+a y=0,a z+y=0 and a x+z=0 has infinite so...

    Text Solution

    |

  15. If A+B+C =pi , then the value of determinant |{:(sin^2A,cotA,1),(sin^2...

    Text Solution

    |

  16. For A=a^2+b^2+c^2,B=ab+bc+ca,(a^3,b^3c^3-3abc)^2 is equal to

    Text Solution

    |

  17. If A, B, C are angle of a triangle ABC, then the value of the determi...

    Text Solution

    |

  18. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  19. The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 i...

    Text Solution

    |

  20. |[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))^2, (5^x+5^(-x))^2] , [(2^x-2^...

    Text Solution

    |