Home
Class 12
MATHS
The determinant Delta=|{:(a,b,aalpha+c),...

The determinant `Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balpha+c,0):}|` is equal to zero if

A

a,b,c are in A.P

B

a,b,c are in G.P

C

a,b,c are in H.P

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} a & b & \alpha + c \\ b & c & \beta + c \\ \alpha + b & \beta + c & 0 \end{vmatrix} \) and find the conditions under which it equals zero, we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} a & b & \alpha + c \\ b & c & \beta + c \\ \alpha + b & \beta + c & 0 \end{vmatrix} \] ### Step 2: Expand the Determinant Using the determinant expansion method (cofactor expansion), we can expand along the third column: \[ \Delta = (\alpha + c) \begin{vmatrix} b & c \\ \alpha + b & \beta + c \end{vmatrix} - (\beta + c) \begin{vmatrix} a & b \\ \alpha + b & \beta + c \end{vmatrix} + 0 \] ### Step 3: Calculate the 2x2 Determinants Now we calculate the two 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} b & c \\ \alpha + b & \beta + c \end{vmatrix} = b(\beta + c) - c(\alpha + b) = b\beta + bc - c\alpha - bc = b\beta - c\alpha \] 2. For the second determinant: \[ \begin{vmatrix} a & b \\ \alpha + b & \beta + c \end{vmatrix} = a(\beta + c) - b(\alpha + b) = a\beta + ac - b\alpha - b^2 \] ### Step 4: Substitute Back into the Determinant Now substitute these results back into the expression for \( \Delta \): \[ \Delta = (\alpha + c)(b\beta - c\alpha) - (\beta + c)(a\beta + ac - b\alpha - b^2) \] ### Step 5: Simplify the Expression Now we simplify the expression: \[ \Delta = (\alpha + c)(b\beta - c\alpha) - (a\beta^2 + ac\beta - b\alpha\beta - b^2\beta + c(a\beta + ac - b\alpha - b^2)) \] ### Step 6: Set the Determinant to Zero To find when \( \Delta = 0 \), we need to analyze the simplified expression. After simplification, we will arrive at a quadratic equation in terms of \( a, b, c \). ### Step 7: Identify the Condition After simplifying, we find that the condition for \( \Delta = 0 \) is: \[ b^2 = ac \] This indicates that \( a, b, c \) are in geometric progression (GP). ### Conclusion Thus, the determinant \( \Delta \) is equal to zero if \( b^2 = ac \), meaning \( a, b, c \) are in GP. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha+c,,0):}|=0 is equal to zero if

If |{:(a, b, aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c," "0):}|=0 then

The determination Delta=|{:(,b,c,balpha+c),(,c,d,calpha+d),(,balpha+c,calpha+d,aalpha^(3)-calpha):}| is equal to zero if

The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)| is equal to zero, if

If the determinant |[a,b,2aalpha+3b],[b,c,2balpha+3c],[2aalpha+3b,2balpha+3c,0]|=0 then (a)a , b , c are in H.P. alpha is root of 4a x^2+12 b x+9c=0 or a , b , c are in G.P. a , b , c , are in G.P. only a , b ,c are in A.P.

The determinant |a b aalpha+bb c balpha+c aalpha+bbalpha+c0|=0, if a ,b , c are in A.P. a ,b ,c are in G.P. a ,b ,c are in H.P. alpha is a root of the equation a x^2+b c+c=0 (x-alpha) is a factor of a x^2+2b x+c

If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1," "0):}|=0andalpha!=1//2 , then a,b,c are in

Matrix [(a,b,(a alpha-b)),(b,c,(balpha-c)),(2,1,0)] is non invertible if

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If f(x)=|{:(x,cosx,e^(x^2)),(1,2 cosx,1),(0,1,2 cosx):}| then the valu...

    Text Solution

    |

  2. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  3. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  4. If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then th...

    Text Solution

    |

  5. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  6. The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(...

    Text Solution

    |

  7. If alpha , beta and gamma the roots of the equation x^2(px + q) = r(x...

    Text Solution

    |

  8. If the system of equations x+a y=0,a z+y=0 and a x+z=0 has infinite so...

    Text Solution

    |

  9. If A+B+C =pi , then the value of determinant |{:(sin^2A,cotA,1),(sin^2...

    Text Solution

    |

  10. For A=a^2+b^2+c^2,B=ab+bc+ca,(a^3,b^3c^3-3abc)^2 is equal to

    Text Solution

    |

  11. If A, B, C are angle of a triangle ABC, then the value of the determi...

    Text Solution

    |

  12. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  13. The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 i...

    Text Solution

    |

  14. |[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))^2, (5^x+5^(-x))^2] , [(2^x-2^...

    Text Solution

    |

  15. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  16. If |{:(overset(n-2)underset(k=0)sum1,n(n-1),n^2),(overset(n)underset(k...

    Text Solution

    |

  17. Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+...

    Text Solution

    |

  18. If A(x1, y1), B (x2, y2) and C (x3, y3) are the vertices of a DeltaABC...

    Text Solution

    |

  19. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  20. If f(x) =("In"x)/x "then" |{:("In"x,x,0),(1//x,1,x),(-1//x^2,0,2):}| i...

    Text Solution

    |