Home
Class 12
MATHS
If the expression |{:(x^2+x+3,1,4),(2x^4...

If the expression `|{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}|` is equal to `ax^4+bx^3+cx^2+dx+e` , then the value of e is equal to

A

zero

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{pmatrix} x^2 + x + 3 & 1 & 4 \\ 2x^4 + x^3 + 2x + 1 & 2 & 3 \\ x^2 + x & 1 & 1 \end{pmatrix} | \) and find the constant term \( e \) in the expression \( ax^4 + bx^3 + cx^2 + dx + e \), we will proceed step by step. ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} x^2 + x + 3 & 1 & 4 \\ 2x^4 + x^3 + 2x + 1 & 2 & 3 \\ x^2 + x & 1 & 1 \end{vmatrix} \] ### Step 2: Expand the determinant We will use the first row to expand the determinant: \[ D = (x^2 + x + 3) \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2x^4 + x^3 + 2x + 1 & 3 \\ x^2 + x & 1 \end{vmatrix} + 4 \begin{vmatrix} 2x^4 + x^3 + 2x + 1 & 2 \\ x^2 + x & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 1) = 2 - 3 = -1 \] 2. For the second determinant: \[ \begin{vmatrix} 2x^4 + x^3 + 2x + 1 & 3 \\ x^2 + x & 1 \end{vmatrix} = (2x^4 + x^3 + 2x + 1) \cdot 1 - (3 \cdot (x^2 + x)) = 2x^4 + x^3 + 2x + 1 - 3x^2 - 3x = 2x^4 + x^3 - 3x^2 - x + 1 \] 3. For the third determinant: \[ \begin{vmatrix} 2x^4 + x^3 + 2x + 1 & 2 \\ x^2 + x & 1 \end{vmatrix} = (2x^4 + x^3 + 2x + 1) \cdot 1 - (2 \cdot (x^2 + x)) = 2x^4 + x^3 + 2x + 1 - 2x^2 - 2x = 2x^4 + x^3 - 2x^2 + 1 \] ### Step 4: Substitute back into the determinant Now substituting back into the determinant expression: \[ D = (x^2 + x + 3)(-1) - 1(2x^4 + x^3 - 3x^2 - x + 1) + 4(2x^4 + x^3 - 2x^2 + 1) \] ### Step 5: Simplify the expression 1. The first term becomes: \[ -(x^2 + x + 3) = -x^2 - x - 3 \] 2. The second term becomes: \[ -(2x^4 + x^3 - 3x^2 - x + 1) = -2x^4 - x^3 + 3x^2 + x - 1 \] 3. The third term becomes: \[ 4(2x^4 + x^3 - 2x^2 + 1) = 8x^4 + 4x^3 - 8x^2 + 4 \] ### Step 6: Combine all terms Combining all the terms: \[ D = (-x^2 - x - 3) + (-2x^4 - x^3 + 3x^2 + x - 1) + (8x^4 + 4x^3 - 8x^2 + 4) \] Combining like terms: - \(x^4\) terms: \(-2x^4 + 8x^4 = 6x^4\) - \(x^3\) terms: \(-x^3 + 4x^3 = 3x^3\) - \(x^2\) terms: \(-x^2 + 3x^2 - 8x^2 = -6x^2\) - \(x\) terms: \(-x + x = 0\) - Constant terms: \(-3 - 1 + 4 = 0\) ### Final Result Thus, the determinant simplifies to: \[ D = 6x^4 + 3x^3 - 6x^2 + 0 + 0 \] The constant term \( e \) is: \[ e = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Let |(x,2,x),(x^(2),x,6),(x,x,6)| = ax^(4) + bx^(3) + cx^(2) + dx + e Then, the value of 5a + 4b + 3c + 2d + e is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to

Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E the value of 5A+4B+3C+2D+E is equal to

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

If ax^4+bx^3+cx^2+dx+e=|[2x,x-1,x+1] , [x+1, x^2-x,x-1] , [x-1,x+1,3x]| then the value of c is

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. For A=a^2+b^2+c^2,B=ab+bc+ca,(a^3,b^3c^3-3abc)^2 is equal to

    Text Solution

    |

  2. If A, B, C are angle of a triangle ABC, then the value of the determi...

    Text Solution

    |

  3. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  4. The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 i...

    Text Solution

    |

  5. |[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))^2, (5^x+5^(-x))^2] , [(2^x-2^...

    Text Solution

    |

  6. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  7. If |{:(overset(n-2)underset(k=0)sum1,n(n-1),n^2),(overset(n)underset(k...

    Text Solution

    |

  8. Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+...

    Text Solution

    |

  9. If A(x1, y1), B (x2, y2) and C (x3, y3) are the vertices of a DeltaABC...

    Text Solution

    |

  10. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  11. If f(x) =("In"x)/x "then" |{:("In"x,x,0),(1//x,1,x),(-1//x^2,0,2):}| i...

    Text Solution

    |

  12. Statement 1: If the system of equation lambdax+(b-a)y+(c-a)z=0,(a-b)x+...

    Text Solution

    |

  13. If Ir^2+mr^2+nr^2=1 where r=1,2,3 and I1I2+m1m2+n1n2=0 …..etc. then ...

    Text Solution

    |

  14. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  15. If a, b gt 0 and Delta (x)|(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  16. If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x...

    Text Solution

    |

  17. The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-s...

    Text Solution

    |

  18. The system of equation 102x-95y+88z=81,3x+10y+17z=24, 57x+50y+43z=36 h...

    Text Solution

    |

  19. IF ax^3+bx^2+cx+d=|(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), ...

    Text Solution

    |

  20. In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B...

    Text Solution

    |