Home
Class 12
MATHS
If Ir^2+mr^2+nr^2=1 where r=1,2,3 and I...

If `I_r^2+m_r^2+n_r^2=1` where r=1,2,3 and `I_1I_2+m_1m_2+n_1n_2=0` …..etc. then
`Delta=|{:(I_1,m_1,n_1),(I_2,m_2,n_2),(I_3,m_3,n_3):}|^2` is equal to

A

`-1`

B

1

C

`pm1`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta = |(I_1, m_1, n_1), (I_2, m_2, n_2), (I_3, m_3, n_3)|^2 \) given the conditions: 1. \( I_r^2 + m_r^2 + n_r^2 = 1 \) for \( r = 1, 2, 3 \) 2. \( I_1 I_2 + m_1 m_2 + n_1 n_2 = 0 \) 3. \( I_2 I_3 + m_2 m_3 + n_2 n_3 = 0 \) 4. \( I_1 I_3 + m_1 m_3 + n_1 n_3 = 0 \) ### Step 1: Form the Matrix We can represent the vectors as rows in a matrix \( A \): \[ A = \begin{pmatrix} I_1 & m_1 & n_1 \\ I_2 & m_2 & n_2 \\ I_3 & m_3 & n_3 \end{pmatrix} \] ### Step 2: Calculate the Determinant The determinant \( \Delta \) can be calculated as: \[ \Delta = |A| = \begin{vmatrix} I_1 & m_1 & n_1 \\ I_2 & m_2 & n_2 \\ I_3 & m_3 & n_3 \end{vmatrix} \] ### Step 3: Use the Given Conditions From the conditions provided: - The first condition \( I_r^2 + m_r^2 + n_r^2 = 1 \) indicates that each vector is a unit vector. - The second, third, and fourth conditions indicate that the vectors are mutually orthogonal. ### Step 4: Properties of Determinants Since the vectors are orthogonal and of unit length, the matrix \( A \) is an orthogonal matrix. The determinant of an orthogonal matrix is either \( 1 \) or \( -1 \). Therefore: \[ |A|^2 = 1^2 = 1 \] ### Step 5: Final Result Thus, we have: \[ \Delta = |A|^2 = 1 \] ### Conclusion The value of \( \Delta \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If l_1^2+m_1^2+n_1^2=1 etc., and l_1 l_2+m_1 m_2+n_1 n_2 = 0, etc. and Delta=|(l_1,m_1,n_1),(l_2,m_2,n_2),(l_3,m_3,n_3)| then

If l_(i)^(2)+m_(i)^(2)+n_(i)^(2)=1 , (i=1,2,3) and l_(i)l_(j)+m_(i)m_(j)+n_(i)n_(j)=0,(i ne j,i,j=1,2,3) and Delta=|{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}| then

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

The value of sum_(i=0)^(r)C(n_(1),r-i)C(n_(2),i) is equal to

If I(r)=r(r^(2)-1), then sum_(r=2)^(n)(1)/(I(r)) is equal to

Two lines with direction cosines l_1,m_1,n_1 and l_2,m_2,n_2 are at righat angles iff (A) l_1l_2+m_1m_2+n_1n_2=0 (B) l_1=l_2,m_1=m_2,n_1=n_2 (C) l_1/l_2=m_1/m_2=n_1/n_2 (D) l_1l_2=m_1m_2=n_1n_2

ABCD is a square of length a, a in N, a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,....be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1. Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :

The direction ratios of the bisector of the angle between the lines whose direction cosines are l_1,m_1,n_1 and l_2,m_2,n_2 are (A) l_1+l_2,m_1+m_2+n_1+n_2 (B) l_1-l_2,m_1-m_2-n_1-n_2 (C) l_1m_2-l_2m_1,m_1n_2-m_2n_1,n_1l_2-n_2l_1 (D) l_1m_2+l_2m_1,m_1n_2+m_2n_1,n_1l_2+n_2l_1

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If f(x) =("In"x)/x "then" |{:("In"x,x,0),(1//x,1,x),(-1//x^2,0,2):}| i...

    Text Solution

    |

  2. Statement 1: If the system of equation lambdax+(b-a)y+(c-a)z=0,(a-b)x+...

    Text Solution

    |

  3. If Ir^2+mr^2+nr^2=1 where r=1,2,3 and I1I2+m1m2+n1n2=0 …..etc. then ...

    Text Solution

    |

  4. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  5. If a, b gt 0 and Delta (x)|(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  6. If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x...

    Text Solution

    |

  7. The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-s...

    Text Solution

    |

  8. The system of equation 102x-95y+88z=81,3x+10y+17z=24, 57x+50y+43z=36 h...

    Text Solution

    |

  9. IF ax^3+bx^2+cx+d=|(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), ...

    Text Solution

    |

  10. In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B...

    Text Solution

    |

  11. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  12. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  13. If D=|{:(2,1,[sin^2theta]),([sin^2theta],costheta,i),(i,1,sintheta):}|...

    Text Solution

    |

  14. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  15. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |

  16. Let x1y1z1,x2y2z2 and x3y3z3 be three 3-digit even numbers and Delta=|...

    Text Solution

    |

  17. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  18. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  19. Let a,b,c , in R not all are equal and Delta(1)= |{:(a,,b,,c),(b,,c,...

    Text Solution

    |

  20. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |