Home
Class 12
MATHS
The value of f(pi/6) where f(theta)=|{:(...

The value of `f(pi/6)` where `f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f\left(\frac{\pi}{6}\right) \) where \[ f(\theta) = \begin{vmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{vmatrix} \] we will calculate the determinant step by step. ### Step 1: Write the determinant We start with the determinant as given: \[ D = \begin{vmatrix} \cos^2 \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0 \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row. The formula for the determinant of a 3x3 matrix is: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the remaining rows. Using the first row: \[ D = \cos^2 \theta \begin{vmatrix} \sin^2 \theta & \cos \theta \\ -\cos \theta & 0 \end{vmatrix} - \cos \theta \sin \theta \begin{vmatrix} \cos \theta \sin \theta & \cos \theta \\ \sin \theta & 0 \end{vmatrix} - \sin \theta \begin{vmatrix} \cos \theta \sin \theta & \sin^2 \theta \\ \sin \theta & -\cos \theta \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} \sin^2 \theta & \cos \theta \\ -\cos \theta & 0 \end{vmatrix} = (0 \cdot \sin^2 \theta) - (-\cos \theta \cdot \cos \theta) = \cos^2 \theta \] 2. For the second determinant: \[ \begin{vmatrix} \cos \theta \sin \theta & \cos \theta \\ \sin \theta & 0 \end{vmatrix} = (0 \cdot \cos \theta \sin \theta) - (\cos \theta \cdot \sin \theta) = -\cos \theta \sin \theta \] 3. For the third determinant: \[ \begin{vmatrix} \cos \theta \sin \theta & \sin^2 \theta \\ \sin \theta & -\cos \theta \end{vmatrix} = (-\cos \theta \cdot \cos \theta \sin \theta) - (\sin^2 \theta \cdot \sin \theta) = -\cos^2 \theta \sin \theta - \sin^3 \theta \] ### Step 4: Substitute back into the determinant Substituting these back into our expression for \( D \): \[ D = \cos^2 \theta (\cos^2 \theta) - \cos \theta \sin \theta (-\cos \theta \sin \theta) - \sin \theta (-\cos^2 \theta \sin \theta - \sin^3 \theta) \] This simplifies to: \[ D = \cos^4 \theta + \cos^2 \theta \sin^2 \theta + \sin \theta (\cos^2 \theta \sin \theta + \sin^3 \theta) \] ### Step 5: Simplify further Notice that \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ D = \cos^4 \theta + \cos^2 \theta \sin^2 \theta + \sin^2 \theta \cos^2 \theta + \sin^4 \theta \] This can be factored as: \[ D = (\cos^2 \theta + \sin^2 \theta)^2 = 1^2 = 1 \] ### Step 6: Conclusion Thus, we find that: \[ f(\theta) = 1 \] Therefore, \[ f\left(\frac{\pi}{6}\right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+(sin^(3)theta-cos^(3)theta)/(sintheta-costheta)=

Solve: costheta+sintheta=cost2theta+sin2theta

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

If sintheta-costheta=0 , then sin^3theta+cos^3theta=?

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If a, b gt 0 and Delta (x)|(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  2. If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x...

    Text Solution

    |

  3. The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-s...

    Text Solution

    |

  4. The system of equation 102x-95y+88z=81,3x+10y+17z=24, 57x+50y+43z=36 h...

    Text Solution

    |

  5. IF ax^3+bx^2+cx+d=|(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), ...

    Text Solution

    |

  6. In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B...

    Text Solution

    |

  7. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  8. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  9. If D=|{:(2,1,[sin^2theta]),([sin^2theta],costheta,i),(i,1,sintheta):}|...

    Text Solution

    |

  10. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  11. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |

  12. Let x1y1z1,x2y2z2 and x3y3z3 be three 3-digit even numbers and Delta=|...

    Text Solution

    |

  13. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  14. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  15. Let a,b,c , in R not all are equal and Delta(1)= |{:(a,,b,,c),(b,,c,...

    Text Solution

    |

  16. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  17. If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx...

    Text Solution

    |

  18. If ai, bi in N for i 1,2,3, then coefficient of x in the determinant;|...

    Text Solution

    |

  19. Statement 1: The product of two diagonal matrices of order 3 is also ...

    Text Solution

    |

  20. Statement -1 : If Delta(x)=|{:(f1(x),f2(x),f3(x)),(a2,b2,c2),(a3,b3,c3...

    Text Solution

    |