Home
Class 12
MATHS
Let x1y1z1,x2y2z2 and x3y3z3 be three 3-...

Let `x_1y_1z_1,x_2y_2z_2 and x_3y_3z_3` be three 3-digit even numbers and `Delta=|{:(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3):}|`. then `Delta` is

A

divisible by 2 but not necessarily by 4

B

divisible by 4 but not necessarily by 8

C

divisible by 8

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\Delta = |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)|\), we will compute the determinant of the matrix formed by the coordinates of the three 3-digit even numbers. ### Step 1: Write the matrix The determinant \(\Delta\) can be represented as: \[ \Delta = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 2: Apply the determinant formula The formula for the determinant of a 3x3 matrix is given by: \[ \Delta = x_1(y_2z_3 - y_3z_2) - y_1(x_2z_3 - x_3z_2) + z_1(x_2y_3 - x_3y_2) \] ### Step 3: Substitute the values Since \(x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3\) are all 3-digit even numbers, we can substitute these values into the determinant formula. However, since they are even numbers, we can conclude that: - Each \(x_i\), \(y_i\), and \(z_i\) can be expressed in the form \(2k\) where \(k\) is an integer. ### Step 4: Factor out the common factor Since all the numbers are even, we can factor out \(2\) from each term: \[ \Delta = 2 \cdot \begin{vmatrix} k_1 & m_1 & n_1 \\ k_2 & m_2 & n_2 \\ k_3 & m_3 & n_3 \end{vmatrix} \] where \(k_i = \frac{x_i}{2}, m_i = \frac{y_i}{2}, n_i = \frac{z_i}{2}\). ### Step 5: Conclusion The determinant \(\Delta\) is thus an even number because it is a multiple of \(2\). The exact value of \(\Delta\) will depend on the specific values of \(x_i, y_i, z_i\), but it will always be even. ### Final Result Therefore, \(\Delta\) is an even number. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Find the coordinates of the centroid of a triangle having vertices P(x_1,y_1,z_1),Q(x_2,y_2,z_2) and R(x_3,y_3,z_3)

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

x+y+z=1 x-2y+3z=2 5x-3y+z=3

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:} , then

If (x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)+(z_(1)-4)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)+(z_(2)-4)^(2) =(x_(3)-2)^(2)+(y_(3)-3)^(2)+(z_(3)-4)^(2) then sum x_(1)+2sum y_(1)+3sum z_(1)

Show that the coordinates off the centroid of the triangle with vertices A(x_(1),y_(1),z_(1)),B(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are ((x_(1)+x_(2)+x_(3))/(3),(y_(1)+y_(2)+y_(3))/(3),(z_(1)+z_(2)+z_(3))/(3))

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x...

    Text Solution

    |

  2. The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-s...

    Text Solution

    |

  3. The system of equation 102x-95y+88z=81,3x+10y+17z=24, 57x+50y+43z=36 h...

    Text Solution

    |

  4. IF ax^3+bx^2+cx+d=|(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), ...

    Text Solution

    |

  5. In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B...

    Text Solution

    |

  6. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  7. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  8. If D=|{:(2,1,[sin^2theta]),([sin^2theta],costheta,i),(i,1,sintheta):}|...

    Text Solution

    |

  9. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  10. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |

  11. Let x1y1z1,x2y2z2 and x3y3z3 be three 3-digit even numbers and Delta=|...

    Text Solution

    |

  12. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  13. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  14. Let a,b,c , in R not all are equal and Delta(1)= |{:(a,,b,,c),(b,,c,...

    Text Solution

    |

  15. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  16. If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx...

    Text Solution

    |

  17. If ai, bi in N for i 1,2,3, then coefficient of x in the determinant;|...

    Text Solution

    |

  18. Statement 1: The product of two diagonal matrices of order 3 is also ...

    Text Solution

    |

  19. Statement -1 : If Delta(x)=|{:(f1(x),f2(x),f3(x)),(a2,b2,c2),(a3,b3,c3...

    Text Solution

    |

  20. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |