Home
Class 12
MATHS
Statement -1 : If Delta(x)=|{:(f1(x),f2(...

Statement -1 : If `Delta(x)=|{:(f_1(x),f_2(x),f_3(x)),(a_2,b_2,c_2),(a_3,b_3,c_3):}|` where, `f_1 , f_2,f_3` are different functions and `a_2,b_2,c_2 and a_3,b_3,c_3` are constants then `intDelta(x)dx=|{:(intf_1(x)dx,intf_2(x)dx,intf_3(x)dx),(a_2,b_2,c_2),(a_3,b_3,c_3):}|`
because
Statement-2 : Integration of sum of several functions is equal to the sum of integration of individual function.

A

Statement -1 is True, Statement -2 is True, Statement -2 is a correct explanation for statement-2

B

Statement -1 is true, statement-2 is true , statement-2 is NOT a correct explanation for statement-2

C

Statement-1 is true, statement -2 is False

D

Statement -1 is False, Statement -2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the statements provided and verify their correctness step by step. ### Step 1: Understand the Determinant We have a determinant defined as: \[ \Delta(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \] where \(f_1, f_2, f_3\) are different functions of \(x\) and \(a_2, b_2, c_2, a_3, b_3, c_3\) are constants. ### Step 2: Calculate the Determinant Using the properties of determinants, we can expand \(\Delta(x)\): \[ \Delta(x) = f_1(x) \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - f_2(x) \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + f_3(x) \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta(x) = f_1(x)(b_2c_3 - c_2b_3) - f_2(x)(a_2c_3 - a_3c_2) + f_3(x)(a_2b_3 - a_3b_2) \] ### Step 3: Integrate the Determinant Now we need to integrate \(\Delta(x)\): \[ \int \Delta(x) \, dx = \int \left[ f_1(x)(b_2c_3 - c_2b_3) - f_2(x)(a_2c_3 - a_3c_2) + f_3(x)(a_2b_3 - a_3b_2) \right] dx \] Using the linearity of integration, we can separate the integrals: \[ \int \Delta(x) \, dx = (b_2c_3 - c_2b_3) \int f_1(x) \, dx - (a_2c_3 - a_3c_2) \int f_2(x) \, dx + (a_2b_3 - a_3b_2) \int f_3(x) \, dx \] ### Step 4: Formulate the Result Thus, we can express the integral of the determinant as: \[ \int \Delta(x) \, dx = \begin{vmatrix} \int f_1(x) \, dx & \int f_2(x) \, dx & \int f_3(x) \, dx \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \] ### Conclusion From the above steps, we can conclude that Statement 1 is indeed correct as it aligns with the properties of determinants and integration.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and A_2,B_2,C_2 are respectively cofactors of a_2,b_2,c_2 then a_1A_2+b_1B_2+c_1C_2 is

Statement -1 : The lines a_i x + b_i y + c _i=0,i={1,2,3} are concurrent if |{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3 ,b_3,c_3):}|=0 because Statement -2 : The area of triangle fomed by three concurrent lines must be zero.

If delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

Consider the system of equations a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 if {:abs((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)):}=0 , then the system has

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, then the value of Delta_1=|(a_1+2b_1+3c_1,2c_1+3c_1,c_1),(a_2+2b_2+3c_2,2b_2+3c_2,c_2),(a_3+2b_3+ 3c_3,2b_3+3c_3,c_3)| is equal to

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x...

    Text Solution

    |

  2. The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-s...

    Text Solution

    |

  3. The system of equation 102x-95y+88z=81,3x+10y+17z=24, 57x+50y+43z=36 h...

    Text Solution

    |

  4. IF ax^3+bx^2+cx+d=|(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), ...

    Text Solution

    |

  5. In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B...

    Text Solution

    |

  6. If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(...

    Text Solution

    |

  7. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  8. If D=|{:(2,1,[sin^2theta]),([sin^2theta],costheta,i),(i,1,sintheta):}|...

    Text Solution

    |

  9. If alpha is a root of x^4 = 1 with negative principal argument then th...

    Text Solution

    |

  10. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |

  11. Let x1y1z1,x2y2z2 and x3y3z3 be three 3-digit even numbers and Delta=|...

    Text Solution

    |

  12. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  13. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  14. Let a,b,c , in R not all are equal and Delta(1)= |{:(a,,b,,c),(b,,c,...

    Text Solution

    |

  15. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  16. If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx...

    Text Solution

    |

  17. If ai, bi in N for i 1,2,3, then coefficient of x in the determinant;|...

    Text Solution

    |

  18. Statement 1: The product of two diagonal matrices of order 3 is also ...

    Text Solution

    |

  19. Statement -1 : If Delta(x)=|{:(f1(x),f2(x),f3(x)),(a2,b2,c2),(a3,b3,c3...

    Text Solution

    |

  20. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |