Home
Class 12
MATHS
|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}...

`|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)`

A

(a-b)(b-c)(c-a)

B

(a-b)(b-c)(c-a)(a+b+c)

C

(a-b)(b-c)(c-a)(ab+bc+ca)

D

(a-b)(b-c)(c-a)abc

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -III|3 Videos
  • DETERMINANT

    FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

Show that |abca^(2)b^(2)c^(2)baab|=|111a^(2)b^(2)c^(2)a^(2)b^(2)c^(3)|=(a-b)(b-c)(c-a)(ab+bc+ca)

" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}| where a,b,c are distinct positive reals then the possible values of abc is // are

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))