Home
Class 12
MATHS
If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)...

If `(a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)` and `ab ne 0` then the numerical value of `(a)/(b)+ (b)/(a)` is equal to-

A

`(3)/(2)`

B

`(2)/(3)`

C

1

D

`(4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a^2 + b^2)^3 = (a^3 + b^3)^2\) and find the numerical value of \(\frac{a}{b} + \frac{b}{a}\), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ (a^2 + b^2)^3 = (a^3 + b^3)^2 \] ### Step 2: Use the identity for \(a^3 + b^3\) Recall the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Thus, we can express the right-hand side: \[ (a^3 + b^3)^2 = [(a + b)(a^2 - ab + b^2)]^2 \] ### Step 3: Expand both sides Now, we will expand both sides: - Left-hand side: \[ (a^2 + b^2)^3 \] - Right-hand side: \[ [(a + b)(a^2 - ab + b^2)]^2 = (a + b)^2 (a^2 - ab + b^2)^2 \] ### Step 4: Set up a relationship Since both sides are equal, we can analyze the structure of the equation. We can also use the fact that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \implies (a^2 + b^2)^3 = [(a + b)(a^2 - ab + b^2)]^2 \] ### Step 5: Simplify using \(x = \frac{a}{b}\) Let \(x = \frac{a}{b}\). Then, \(\frac{b}{a} = \frac{1}{x}\). We need to find: \[ x + \frac{1}{x} \] ### Step 6: Substitute and simplify Using the relationship we derived, we can express \(a^2 + b^2\) and \(ab\) in terms of \(x\): \[ a^2 + b^2 = b^2(x^2 + 1) \quad \text{and} \quad ab = b^2x \] Substituting these into the equation gives: \[ (b^2(x^2 + 1))^3 = (b^3(x^3 + 1))^2 \] ### Step 7: Cancel \(b^6\) Since \(b \neq 0\), we can divide both sides by \(b^6\): \[ (x^2 + 1)^3 = (x^3 + 1)^2 \] ### Step 8: Solve for \(x\) Now we can solve the equation: 1. Expand both sides. 2. Set them equal and simplify. After simplification, we find: \[ x + \frac{1}{x} = 2 \quad \text{or} \quad x + \frac{1}{x} = \frac{2}{3} \] ### Final Step: Conclusion Thus, the numerical value of \(\frac{a}{b} + \frac{b}{a}\) is: \[ \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (a^(2)+b^(2))^(3)=(a^(3)+b^(3))^(2) and ab!=0 the numerical value of (a)/(b)+(b)/(a) is:

If (a ^(2) + b ^(2)) ^(3) = (a ^(3) + b ^(3)) ^(2) and ab ne 0, then ((a)/(b) + (b)/(a)) ^(6) is equal to

If (a^2+b^2)^3=(a^3+b^3)^2 and ab ne 0 then (a/b+b/a)^6 is equal to :

If (a^2 + b^2)^3 = (a^3 + b^3)^2 and ab != 0 then (a/b + b/a)^6 is equal to :

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to