Home
Class 12
MATHS
If x = sum(n=0)^(oo) a^(n), y=sum(n=0)^...

If `x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n)` where a,b,c are in A.P. and `|a| lt 1, |b| lt 1, |c| lt 1`, then x,y,z are in

A

HP

B

Arithmetic -Geometric Progression

C

AP

D

GP

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sums of the infinite geometric series for \( x \), \( y \), and \( z \), and then determine the relationship between these sums given that \( a, b, c \) are in arithmetic progression (A.P.). ### Step 1: Calculate \( x \) The sum \( x \) is given by: \[ x = \sum_{n=0}^{\infty} a^n \] This is a geometric series with the first term \( 1 \) (when \( n=0 \)) and common ratio \( a \). The formula for the sum of an infinite geometric series is: \[ S = \frac{a}{1 - r} \] where \( |r| < 1 \). Here, \( r = a \), so: \[ x = \frac{1}{1 - a} \] ### Step 2: Calculate \( y \) Similarly, for \( y \): \[ y = \sum_{n=0}^{\infty} b^n \] This is also a geometric series with first term \( 1 \) and common ratio \( b \): \[ y = \frac{1}{1 - b} \] ### Step 3: Calculate \( z \) For \( z \): \[ z = \sum_{n=0}^{\infty} c^n \] This follows the same pattern: \[ z = \frac{1}{1 - c} \] ### Step 4: Establish the relationship between \( a, b, c \) Since \( a, b, c \) are in A.P., we have: \[ 2b = a + c \] ### Step 5: Express \( x, y, z \) in terms of \( a, b, c \) From the previous calculations: \[ x = \frac{1}{1 - a}, \quad y = \frac{1}{1 - b}, \quad z = \frac{1}{1 - c} \] ### Step 6: Show that \( x, y, z \) are in Harmonic Progression (H.P.) To show that \( x, y, z \) are in H.P., we need to show that: \[ \frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y} \] Calculating \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \): \[ \frac{1}{x} = 1 - a, \quad \frac{1}{y} = 1 - b, \quad \frac{1}{z} = 1 - c \] Now, substituting these into the H.P. condition: \[ (1 - b) - (1 - a) = (1 - c) - (1 - b) \] This simplifies to: \[ -b + a = -c + b \] Rearranging gives: \[ a + c = 2b \] This confirms that \( x, y, z \) are in H.P. ### Conclusion Thus, we conclude that if \( a, b, c \) are in A.P., then \( x, y, z \) are in H.P.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-3|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-4|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-1|1 Videos
  • RACE

    ALLEN|Exercise Race 21|10 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos

Similar Questions

Explore conceptually related problems

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n, z=sum_(n=0)^oo c^n where a,b,c are in A.P and |a|<1, |b<1, |c|<1, then x,y,z are in

If quad sum_(n=0)^(oo)a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)c^(n), wherer a,b, and c are in A.P.and |a|<,|b|<1, and |c|<1, then prove that x,y and z are in H.P.

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If x=Sigma_(n=0)^(oo) a^n,y=Sigma_(n=0)^(oo) b^n,z=Sigma_(n=0)^(oo) c^n where a, b,and c are in A.P and |a|lt 1 ,|b|lt 1 and |c|1 then prove that x,y and z are in H.P

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -

if x=sum a^(n),y=sum b^(n),z=sum c^(n) where a,b,c are in AP then x,y,z are in

ALLEN-SEQUENCE AND PROGRESSION-Exercise O-2
  1. If for an A.P. a1,a2,a3,........,an,........a1+a3+a5=-12 and a1a2a3=8,...

    Text Solution

    |

  2. If the sum of the first 11 terms of an arithmetical progression equals...

    Text Solution

    |

  3. Let s(1), s(2), s(3).... and t(1), t(2), t(3).... are two arithmetic s...

    Text Solution

    |

  4. If x in R , the numbers 5^(1+x) + 5^(1-x) , a/2 , 25^x + 25^(-x) form ...

    Text Solution

    |

  5. Along a road lies an odd number of stones placed at intervals of 10m. ...

    Text Solution

    |

  6. In an A.P. with first term 'a' and the common difference d(a, d!= 0), ...

    Text Solution

    |

  7. Let an, n in N is an A.P with common difference d and all whose terms ...

    Text Solution

    |

  8. Let a(1), a(2), a(3).... and b(1), b(2), b(3)... be arithmetic progres...

    Text Solution

    |

  9. The arithmetic mean of the nine number in the given set {9,99,999, ......

    Text Solution

    |

  10. If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n term...

    Text Solution

    |

  11. If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 ...

    Text Solution

    |

  12. The sum of the first three terms of an increasing G.P. is 21 and the s...

    Text Solution

    |

  13. a, b, c are distinct positive real in HP, then the value of the expres...

    Text Solution

    |

  14. If sin(x-y),sinx,sin(x+y) are in H.P., then find the value of sinxsec(...

    Text Solution

    |

  15. An H.M. is inserted between the number 1/3 and an unknown number. If w...

    Text Solution

    |

  16. lf abcd=1 where a,b,c,d are positive reals then the minimum value of ...

    Text Solution

    |

  17. If 27 abc> (a+b+c)^3 and 3a +4b +5c=12 then 1/a^2+1/b^3+1/c^5=10, wh...

    Text Solution

    |

  18. If x = sum(n=0)^(oo) a^(n), y=sum(n=0)^(oo) b^(n), z = sum(n=0)^(oo) ...

    Text Solution

    |

  19. IF S=1^2+3^2+5^2....99^2 then the value of the sum 2^2+4^2+6^2...100^2

    Text Solution

    |

  20. For which positive integers n is the ratio, (sum+(k=1)^(n) k^(2))/(sum...

    Text Solution

    |