Home
Class 12
MATHS
Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1)...

Let `A=((1,0,0),(2,1,0),(3,2,1))`. If `u_(1)` and `u_(2)` are column matrices such that `Au_(1)=((1),(0),(0))` and `Au_(2)=((0),(1),(0))`, then `u_(1)+u_(2)` is equal to :

A

`((-1),(1),(0))`

B

`((-1),(1),(-1))`

C

`((-1),(-1),(0))`

D

`((1),(-1),(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the column matrices \( u_1 \) and \( u_2 \) given that: 1. \( A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \) 2. \( A u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) 3. \( A u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) ### Step 1: Find \( u_1 \) We start by solving for \( u_1 \) using the equation \( A u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \). Let \( u_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \). Then, we have: \[ A u_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \] This leads to the following system of equations: 1. \( 1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1 \) → \( x_1 = 1 \) 2. \( 2 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 = 0 \) → \( 2 \cdot 1 + x_2 = 0 \) → \( x_2 = -2 \) 3. \( 3 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 = 0 \) → \( 3 \cdot 1 + 2 \cdot (-2) + x_3 = 0 \) → \( 3 - 4 + x_3 = 0 \) → \( x_3 = 1 \) Thus, we find: \[ u_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \] ### Step 2: Find \( u_2 \) Next, we solve for \( u_2 \) using the equation \( A u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \). Let \( u_2 = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \). Then, we have: \[ A u_2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \] This leads to the following system of equations: 1. \( 1 \cdot y_1 + 0 \cdot y_2 + 0 \cdot y_3 = 0 \) → \( y_1 = 0 \) 2. \( 2 \cdot y_1 + 1 \cdot y_2 + 0 \cdot y_3 = 1 \) → \( 0 + y_2 = 1 \) → \( y_2 = 1 \) 3. \( 3 \cdot y_1 + 2 \cdot y_2 + 1 \cdot y_3 = 0 \) → \( 0 + 2 + y_3 = 0 \) → \( y_3 = -2 \) Thus, we find: \[ u_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \] ### Step 3: Calculate \( u_1 + u_2 \) Now we can find \( u_1 + u_2 \): \[ u_1 + u_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 + 0 \\ -2 + 1 \\ 1 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \] ### Final Answer Thus, \( u_1 + u_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \). ---

To solve the problem, we need to find the sum of the column matrices \( u_1 \) and \( u_2 \) given that: 1. \( A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \) 2. \( A u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) 3. \( A u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) ### Step 1: Find \( u_1 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A =((1,0,0),(2,1,0),(3,2,1)) u_(1) and u_(2) are the column matrices such that Au_(1) = ((1),(0),(0))and Au_(2) = ((0),(1),(0))" then " u_(1) + u_(2) is equal to

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A""=(1 0 0 2 1 0 3 2 1) If u_1 and u_2 are column matrices such that A u_1=(1 0 0) and A u_2=(0 1 0) , then u_1+""u_2 is equal to (1) (-1 1 0) (2) (-1 1-1) (3) (-1-1 0) (4) (1-1-1)

Let A=[(1,0,0),(2,1,0),(3,2,1)], if U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The sum of elements of U^-1 is: (A) -1 (B) 0 (C) 1 (D) 3

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of |U| is (A) 3 (B) -3 (C) 3/2 (D) 2

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_ =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of determinant [(3,2,0)] I[(3),(2),(0)] is (A) 5 (B) 5/2 (C) 4 (D) 3/2

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=