Home
Class 12
MATHS
Let K be a positive real number and A=[2...

Let `K` be a positive real number and `A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0]` . If det `(a d jA)+det(a d jB)=10^6,t h e n[k]` is equal to. [Note: `a d jM` denotes the adjoint of a square matix `M` and `[k]` denotes the largest integer less than or equal to `K` ].

Text Solution

Verified by Experts

The correct Answer is:
4

`|A|=(2k+1)^(3), |B|=0` (since B is a skew-symmetric matrix of order 3)
`implies` det (adj A)`=|A|^(n-1)=((2k+1)^(3))^(2)=10^(6)`
`implies 2k+1=10` or `2k=9`
`implies [K]=4`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise JEE Main Previous Year|11 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let K be a positive real number and A=[(2k-1, 2sqrtk, 2sqrtk),(2sqrtk, 1,-2k),(-2sqrtk,2k,-1)] and [(0,2k-1, sqrtk),(1-2k, 0,2),(-sqrtk, -2sqrtk,0)] If det (adjA)+det(adjB)= 10^6 , then [k] is equal to

log_sqrt(k) (sqrt(k sqrt(k sqrt(k sqrt(k)))))

Let K=sum_(r=1)^(n)(1)/(r sqrt(r+1)+(r+1)sqrt(r)) and [x] denotes greatest integer function less than or equal to x then [K]

If x_(0) satisfies the equation log_(2)(x^(2)-4x32)=6then[log_(sqrt(3))x_(0)] equats [ Note: [k] denotes greatest integer less than or equal to k.]

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

CENGAGE-MATRICES-JEE Advanced Previous Year
  1. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  2. For 3xx3 matrices Ma n dN , which of the following statement (s) is (a...

    Text Solution

    |

  3. Let M be a 2xx2 symmetric matrix with integer entries. Then M is inver...

    Text Solution

    |

  4. Let m and N be two 3x3 matrices such that MN=NM. Further if M!=N^2 and...

    Text Solution

    |

  5. Let Xa n dY be two arbitrary, 3xx3 , non-zero, skew-symmetric matrices...

    Text Solution

    |

  6. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  7. Which of the following is (are) NOT the square of a 3xx3 matrix with r...

    Text Solution

    |

  8. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  9. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  10. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  11. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  12. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  13. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  14. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |

  15. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  16. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  17. Let a, b and c be three real numbers satisfying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  18. Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  20. let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let ...

    Text Solution

    |