Home
Class 12
MATHS
If vec(a)=5hat(i)-hat(j)+7hat(k) and ...

If `vec(a)=5hat(i)-hat(j)+7hat(k)` and `vec(b)=hat(i)-hat(j)-lambda hat(k)`, find the value of `lambda` for which `(vec(a)+vec(b))` and `(vec(a)-vec(b))` are orthogonal.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) are orthogonal. This means that their dot product should equal zero. ### Step-by-Step Solution: 1. **Define the Vectors**: \[ \vec{a} = 5\hat{i} - \hat{j} + 7\hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} - \lambda \hat{k} \] 2. **Calculate \( \vec{a} + \vec{b} \)**: \[ \vec{a} + \vec{b} = (5\hat{i} - \hat{j} + 7\hat{k}) + (\hat{i} - \hat{j} - \lambda \hat{k}) \] Combine the components: \[ \vec{a} + \vec{b} = (5 + 1)\hat{i} + (-1 - 1)\hat{j} + (7 - \lambda)\hat{k} \] \[ \vec{a} + \vec{b} = 6\hat{i} - 2\hat{j} + (7 - \lambda)\hat{k} \] 3. **Calculate \( \vec{a} - \vec{b} \)**: \[ \vec{a} - \vec{b} = (5\hat{i} - \hat{j} + 7\hat{k}) - (\hat{i} - \hat{j} - \lambda \hat{k}) \] Combine the components: \[ \vec{a} - \vec{b} = (5 - 1)\hat{i} + (-1 + 1)\hat{j} + (7 + \lambda)\hat{k} \] \[ \vec{a} - \vec{b} = 4\hat{i} + 0\hat{j} + (7 + \lambda)\hat{k} \] 4. **Set Up the Dot Product**: The vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) are orthogonal if: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0 \] 5. **Calculate the Dot Product**: \[ (6\hat{i} - 2\hat{j} + (7 - \lambda)\hat{k}) \cdot (4\hat{i} + 0\hat{j} + (7 + \lambda)\hat{k}) \] Calculate each component: \[ = 6 \cdot 4 + (-2) \cdot 0 + (7 - \lambda)(7 + \lambda) \] \[ = 24 + (7^2 - \lambda^2) = 24 + 49 - \lambda^2 \] \[ = 73 - \lambda^2 \] 6. **Set the Dot Product to Zero**: \[ 73 - \lambda^2 = 0 \] \[ \lambda^2 = 73 \] 7. **Solve for \( \lambda \)**: \[ \lambda = \pm \sqrt{73} \] ### Final Answer: The values of \( \lambda \) for which \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) are orthogonal are: \[ \lambda = \sqrt{73} \quad \text{or} \quad \lambda = -\sqrt{73} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3hat(k) , then find the value of 'lambda' for which the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular to each other.

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

(i) If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , show that (vec(a)+vec(b)) is perpendicular to (vec(A)-vec(b)) . (ii) If vec(a)=(5hat(i)-hat(j)-3 hat(k)) and vec(b)=(hat(i)+3hat(j)-5hat(k)) then show that (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = 5 hat(i) - hat(j) - 3 hat(k) and vec(b) = hat(i) + 3 hat(j) - 5 hat(k) , find the angle between vec(a) and vec(b) .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec a=widehat a=hat i-hat j+7hat k and vec b=5hat j-hat j+lambdahat k, then find the value of lambda so that vec a+vec b and vec a-vec b are perpendicular vectors.

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec a= hat a= hat i-\ hat j+7 hat k and vec b=5 hat j-\ hat j+l...

    Text Solution

    |

  2. If vec p=5 hat i+lambda hat j-3 hat k\ a n d\ vec q= hat i+3 hat j-5...

    Text Solution

    |

  3. If vec(a)=5hat(i)-hat(j)+7hat(k) and vec(b)=hat(i)-hat(j)-lambda ha...

    Text Solution

    |

  4. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  5. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  6. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  7. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  8. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  9. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  10. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  11. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  12. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  13. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  14. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  15. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  16. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  17. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  18. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  19. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  20. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |