Home
Class 12
MATHS
If vec(a)=3hat(i)+hat(j)+9hat(k) and v...

If `vec(a)=3hat(i)+hat(j)+9hat(k)` and `vec(b)=hat(i)+lambda hat(j)+3hat(k)`, then find the value of `'lambda'` for which the vectors `(vec(a)+vec(b))` and `(vec(a)-vec(b))` are perpendicular to each other.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) are perpendicular, we follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 3\hat{i} + \hat{j} + 9\hat{k} \] \[ \vec{b} = \hat{i} + \lambda \hat{j} + 3\hat{k} \] ### Step 2: Calculate \( \vec{a} + \vec{b} \) \[ \vec{a} + \vec{b} = (3\hat{i} + \hat{j} + 9\hat{k}) + (\hat{i} + \lambda \hat{j} + 3\hat{k}) \] Combine the components: \[ = (3 + 1)\hat{i} + (1 + \lambda)\hat{j} + (9 + 3)\hat{k} \] \[ = 4\hat{i} + (1 + \lambda)\hat{j} + 12\hat{k} \] ### Step 3: Calculate \( \vec{a} - \vec{b} \) \[ \vec{a} - \vec{b} = (3\hat{i} + \hat{j} + 9\hat{k}) - (\hat{i} + \lambda \hat{j} + 3\hat{k}) \] Combine the components: \[ = (3 - 1)\hat{i} + (1 - \lambda)\hat{j} + (9 - 3)\hat{k} \] \[ = 2\hat{i} + (1 - \lambda)\hat{j} + 6\hat{k} \] ### Step 4: Set up the dot product For the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) to be perpendicular, their dot product must equal zero: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0 \] Calculating the dot product: \[ (4\hat{i} + (1 + \lambda)\hat{j} + 12\hat{k}) \cdot (2\hat{i} + (1 - \lambda)\hat{j} + 6\hat{k}) \] ### Step 5: Compute the dot product \[ = 4 \cdot 2 + (1 + \lambda)(1 - \lambda) + 12 \cdot 6 \] Calculating each term: \[ = 8 + (1 - \lambda^2) + 72 \] Combine the terms: \[ = 8 + 72 + 1 - \lambda^2 = 81 - \lambda^2 \] ### Step 6: Set the equation to zero Setting the dot product to zero: \[ 81 - \lambda^2 = 0 \] ### Step 7: Solve for \( \lambda \) \[ \lambda^2 = 81 \] Taking the square root: \[ \lambda = \pm 9 \] ### Final Answer The values of \( \lambda \) are: \[ \lambda = 9 \quad \text{or} \quad \lambda = -9 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=5hat(i)-hat(j)+7hat(k) and vec(b)=hat(i)-hat(j)-lambda hat(k) , find the value of lambda for which (vec(a)+vec(b)) and (vec(a)-vec(b)) are orthogonal.

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If the vectors vec(a)=3hat(i)+hat(j)-2hatk and vec(b)=hat(i)+lambda hat(j)-3hat(k) are perpendicular to each other then lambda=?

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .

Find 'lambda' when the vectors : vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=hat(i)-2hat(j)+3hat(k) are perpendicular to each other.

Find the value of lambda so that the vectors vec a=2hat i+lambdahat j+hat k and vec b=hat i-2hat j+3hat k are perpendicular to each other.

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec p=5 hat i+lambda hat j-3 hat k\ a n d\ vec q= hat i+3 hat j-5...

    Text Solution

    |

  2. If vec(a)=5hat(i)-hat(j)+7hat(k) and vec(b)=hat(i)-hat(j)-lambda ha...

    Text Solution

    |

  3. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  4. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  5. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  6. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  7. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  8. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  9. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  10. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  11. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  12. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  13. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  14. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  15. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  16. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  17. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  18. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  19. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  20. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |