Home
Class 12
MATHS
Find the scalar product of the following...

Find the scalar product of the following pairs of vectors and the angle between them :
`2hat(i)-3hat(j)+6hat(k) " and " 2hat(i)-3hat(j)-5hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar product (dot product) of the vectors \( \mathbf{A} = 2\hat{i} - 3\hat{j} + 6\hat{k} \) and \( \mathbf{B} = 2\hat{i} - 3\hat{j} - 5\hat{k} \), and the angle between them, we can follow these steps: ### Step 1: Calculate the Scalar Product (Dot Product) The scalar product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \] Where: - \( A_x, A_y, A_z \) are the components of vector \( \mathbf{A} \) - \( B_x, B_y, B_z \) are the components of vector \( \mathbf{B} \) For our vectors: - \( \mathbf{A} = (2, -3, 6) \) - \( \mathbf{B} = (2, -3, -5) \) Calculating the dot product: \[ \mathbf{A} \cdot \mathbf{B} = (2)(2) + (-3)(-3) + (6)(-5) \] Calculating each term: 1. \( (2)(2) = 4 \) 2. \( (-3)(-3) = 9 \) 3. \( (6)(-5) = -30 \) Now, summing these results: \[ \mathbf{A} \cdot \mathbf{B} = 4 + 9 - 30 = 13 - 30 = -17 \] ### Step 2: Calculate the Magnitudes of the Vectors The magnitude of a vector \( \mathbf{A} \) is given by: \[ |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2} \] Calculating the magnitude of \( \mathbf{A} \): \[ |\mathbf{A}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] Now, calculating the magnitude of \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{(2)^2 + (-3)^2 + (-5)^2} = \sqrt{4 + 9 + 25} = \sqrt{38} \] ### Step 3: Calculate the Angle Between the Vectors The angle \( \theta \) between two vectors can be found using the formula: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] Substituting the values we found: \[ \cos \theta = \frac{-17}{7 \sqrt{38}} \] ### Step 4: Find the Angle \( \theta \) To find \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-17}{7 \sqrt{38}}\right) \] Since the cosine value is negative, \( \theta \) will be in the second quadrant. ### Final Answer The scalar product of the vectors is \( -17 \) and the angle between them is: \[ \theta = \pi - \cos^{-1}\left(\frac{17}{7 \sqrt{38}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the scalar product of the following pairs of vectors and the angle between them : hat(i)+3hat(j)-8hat(k) " and " -3hat(i)-5hat(j)+4hat(k) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

The sine of the angle between 3hat(i)+hat(j)+2hat(k)and 2hat(i)-2hat(j)+4hat(k) is

the angle between the vectors 2hat i-3hat j+2hat k and hat i+5hat j+5hat k is

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec(a)=5hat(i)-hat(j)+7hat(k) and vec(b)=hat(i)-hat(j)-lambda ha...

    Text Solution

    |

  2. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  3. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  4. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  5. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  6. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  7. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  8. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  9. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  10. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  11. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  12. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  13. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  14. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  15. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  16. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  17. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  18. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  19. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  20. Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c ...

    Text Solution

    |