Home
Class 12
MATHS
Find the scalar product of the following...

Find the scalar product of the following pairs of vectors and the angle between them :
`hat(i)+3hat(j)-8hat(k) " and " -3hat(i)-5hat(j)+4hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the scalar product and the angle between the vectors \( \mathbf{A} = \hat{i} + 3\hat{j} - 8\hat{k} \) and \( \mathbf{B} = -3\hat{i} - 5\hat{j} + 4\hat{k} \), we will follow these steps: ### Step 1: Identify the vectors Let: \[ \mathbf{A} = \hat{i} + 3\hat{j} - 8\hat{k} \] \[ \mathbf{B} = -3\hat{i} - 5\hat{j} + 4\hat{k} \] ### Step 2: Calculate the scalar (dot) product The scalar product (dot product) of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \] where \( A_x, A_y, A_z \) are the components of vector \( \mathbf{A} \) and \( B_x, B_y, B_z \) are the components of vector \( \mathbf{B} \). Calculating the components: - \( A_x = 1, A_y = 3, A_z = -8 \) - \( B_x = -3, B_y = -5, B_z = 4 \) Now, substituting these values: \[ \mathbf{A} \cdot \mathbf{B} = (1)(-3) + (3)(-5) + (-8)(4) \] Calculating each term: \[ = -3 - 15 - 32 \] Adding these together: \[ = -50 \] ### Step 3: Calculate the magnitudes of the vectors The magnitude of a vector \( \mathbf{A} \) is given by: \[ |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2} \] Calculating the magnitude of \( \mathbf{A} \): \[ |\mathbf{A}| = \sqrt{1^2 + 3^2 + (-8)^2} = \sqrt{1 + 9 + 64} = \sqrt{74} \] Calculating the magnitude of \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{(-3)^2 + (-5)^2 + 4^2} = \sqrt{9 + 25 + 16} = \sqrt{50} \] ### Step 4: Use the dot product to find the angle The relationship between the dot product and the angle \( \theta \) between two vectors is given by: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta \] Substituting the known values: \[ -50 = \sqrt{74} \cdot \sqrt{50} \cdot \cos \theta \] \[ \cos \theta = \frac{-50}{\sqrt{74} \cdot \sqrt{50}} \] ### Step 5: Calculate \( \theta \) To find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{-50}{\sqrt{74 \cdot 50}}\right) \] Calculating \( \sqrt{74 \cdot 50} \): \[ \sqrt{74 \cdot 50} = \sqrt{3700} = 10\sqrt{37} \] Thus, \[ \cos \theta = \frac{-50}{10\sqrt{37}} = \frac{-5}{\sqrt{37}} \] Now, substituting back to find \( \theta \): \[ \theta = \cos^{-1}\left(\frac{-5}{\sqrt{37}}\right) \] ### Final Answers 1. The scalar product \( \mathbf{A} \cdot \mathbf{B} = -50 \). 2. The angle \( \theta = \cos^{-1}\left(\frac{-5}{\sqrt{37}}\right) \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the scalar product of the following pairs of vectors and the angle between them : 2hat(i)-3hat(j)+6hat(k) " and " 2hat(i)-3hat(j)-5hat(k)

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

The sine of the angle between 3hat(i)+hat(j)+2hat(k)and 2hat(i)-2hat(j)+4hat(k) is

Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

Find the angle between the vectors 5hat i+3hat j+4hat k and vec a=6hat i-8hat j-hat k

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  2. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  3. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  4. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  5. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  6. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  7. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  8. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  9. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  10. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  11. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  12. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  13. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  14. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  15. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  16. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  17. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  18. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  19. Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c ...

    Text Solution

    |

  20. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k\ a n d\ vec c=7 hat...

    Text Solution

    |