Home
Class 12
MATHS
The position vectors of the vertices of ...

The position vectors of the vertices of `Delta ABC` are : `3hat(i)-4hat(j)-4hat(k), 2hat(i)-hat(j)+hat(k)` and `hat(i)-3hat(j)-5hat(k)` respectively.
(a) Find `vec(AB), vec(BC)` and `vec(CA)`
(b) Prove that `Delta ABC` is a right - angles triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will break it down into two parts as given in the question. ### Part (a): Find `vec(AB)`, `vec(BC)`, and `vec(CA)` 1. **Given Position Vectors**: - Let the position vector of point A be \( \vec{A} = 3\hat{i} - 4\hat{j} - 4\hat{k} \) - Let the position vector of point B be \( \vec{B} = 2\hat{i} - \hat{j} + \hat{k} \) - Let the position vector of point C be \( \vec{C} = \hat{i} - 3\hat{j} - 5\hat{k} \) 2. **Finding `vec(AB)`**: \[ \vec{AB} = \vec{B} - \vec{A} \] \[ = (2\hat{i} - \hat{j} + \hat{k}) - (3\hat{i} - 4\hat{j} - 4\hat{k}) \] \[ = (2 - 3)\hat{i} + (-1 + 4)\hat{j} + (1 + 4)\hat{k} \] \[ = -\hat{i} + 3\hat{j} + 5\hat{k} \] 3. **Finding `vec(BC)`**: \[ \vec{BC} = \vec{C} - \vec{B} \] \[ = (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) \] \[ = (1 - 2)\hat{i} + (-3 + 1)\hat{j} + (-5 - 1)\hat{k} \] \[ = -\hat{i} - 2\hat{j} - 6\hat{k} \] 4. **Finding `vec(CA)`**: \[ \vec{CA} = \vec{A} - \vec{C} \] \[ = (3\hat{i} - 4\hat{j} - 4\hat{k}) - (\hat{i} - 3\hat{j} - 5\hat{k}) \] \[ = (3 - 1)\hat{i} + (-4 + 3)\hat{j} + (-4 + 5)\hat{k} \] \[ = 2\hat{i} - \hat{j} + \hat{k} \] ### Summary of Part (a): - \( \vec{AB} = -\hat{i} + 3\hat{j} + 5\hat{k} \) - \( \vec{BC} = -\hat{i} - 2\hat{j} - 6\hat{k} \) - \( \vec{CA} = 2\hat{i} - \hat{j} + \hat{k} \) --- ### Part (b): Prove that `Delta ABC` is a right-angled triangle To prove that triangle ABC is a right-angled triangle, we will check if the dot product of any two sides is zero, indicating that they are perpendicular. 1. **Calculate the dot product of `vec(AB)` and `vec(CA)`**: \[ \vec{AB} \cdot \vec{CA} = (-\hat{i} + 3\hat{j} + 5\hat{k}) \cdot (2\hat{i} - \hat{j} + \hat{k}) \] \[ = (-1)(2) + (3)(-1) + (5)(1) \] \[ = -2 - 3 + 5 = 0 \] Since \( \vec{AB} \cdot \vec{CA} = 0 \), it implies that angle A is \( 90^\circ \). ### Conclusion: Thus, triangle ABC is a right-angled triangle at vertex A. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle be 2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) and 3hat(i)+6hat(j)-3hat(k) , then the triangle is

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

The position vectors of three vectors A, B and C are given to be hat(i)+3hat(j)+3hat(k), 4hat(i)+4hat(k) and -2hat(i)+4hat(j)+2hat(k) respectively. Find the angle between vec(AB) and vec(AC) .

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  2. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  3. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  4. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  5. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  6. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  7. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  8. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  9. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  10. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  11. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  12. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  13. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  14. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  15. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  16. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  17. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  18. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  19. Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c ...

    Text Solution

    |

  20. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k\ a n d\ vec c=7 hat...

    Text Solution

    |