Home
Class 12
MATHS
If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)...

If `vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k)` and `|vec(c )|=3`, find the vector `vec(c )`, which is perpendicular to both `vec(a)` and `vec(b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{c}\) that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) and has a magnitude of 3, we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = 3\hat{i} + \hat{j} - 4\hat{k} \] \[ \vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k} \] ### Step 2: Calculate the cross product \(\vec{a} \times \vec{b}\) The vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\) can be found using the cross product: \[ \vec{d} = \vec{a} \times \vec{b} \] To compute the cross product, we can use the determinant of a matrix: \[ \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -4 \\ 6 & 5 & -2 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant: \[ \vec{d} = \hat{i} \begin{vmatrix} 1 & -4 \\ 5 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -4 \\ 6 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 6 & 5 \end{vmatrix} \] Calculating the 2x2 determinants: 1. For \(\hat{i}\): \[ 1 \cdot (-2) - (-4) \cdot 5 = -2 + 20 = 18 \] 2. For \(\hat{j}\): \[ 3 \cdot (-2) - (-4) \cdot 6 = -6 + 24 = 18 \quad \text{(remember to subtract this term)} \] 3. For \(\hat{k}\): \[ 3 \cdot 5 - 1 \cdot 6 = 15 - 6 = 9 \] Putting it all together: \[ \vec{d} = 18\hat{i} - 18\hat{j} + 9\hat{k} \] ### Step 4: Find the magnitude of \(\vec{d}\) Now, we compute the magnitude of \(\vec{d}\): \[ |\vec{d}| = \sqrt{(18)^2 + (-18)^2 + (9)^2} = \sqrt{324 + 324 + 81} = \sqrt{729} = 27 \] ### Step 5: Find the unit vector in the direction of \(\vec{d}\) The unit vector \(\hat{d}\) in the direction of \(\vec{d}\) is given by: \[ \hat{d} = \frac{\vec{d}}{|\vec{d}|} = \frac{18\hat{i} - 18\hat{j} + 9\hat{k}}{27} = \frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k} \] ### Step 6: Scale the unit vector to the desired magnitude To find \(\vec{c}\) with a magnitude of 3: \[ \vec{c} = 3 \hat{d} = 3 \left(\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{1}{3}\hat{k}\right) = 2\hat{i} - 2\hat{j} + \hat{k} \] ### Final Answer Thus, the vector \(\vec{c}\) is: \[ \vec{c} = 2\hat{i} - 2\hat{j} + \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and vec(c) =3hat(i)+hat(j)-hat(k) . Find a vector vec(d) which is perpendicular to both vec(a) and vec(b) , and is such that vec(d). Vec(c)=21 .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  2. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  3. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  4. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  5. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  6. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  7. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  8. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  9. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  10. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  11. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  12. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  13. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  14. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  15. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  16. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  17. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  18. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  19. Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c ...

    Text Solution

    |

  20. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k\ a n d\ vec c=7 hat...

    Text Solution

    |