Home
Class 12
MATHS
Vectors vec(a)=hat(i)+hat(j)+hat(k), vec...

Vectors `vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k)` and `vec(c )=hat(i)-2hat(j)+hat(k)` are given. Find vector `vec(d)` if `vec(d)` is perpendicular to `vec(c )` and `vec(d).vec(a)=6, vec(d).vec(b)=11`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{d}\) given the conditions that it is perpendicular to \(\vec{c}\) and satisfies the dot products \(\vec{d} \cdot \vec{a} = 6\) and \(\vec{d} \cdot \vec{b} = 11\), we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{j} + 3\hat{k} \] \[ \vec{c} = \hat{i} - 2\hat{j} + \hat{k} \] Assume: \[ \vec{d} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 2: Use the condition for perpendicularity Since \(\vec{d}\) is perpendicular to \(\vec{c}\), we have: \[ \vec{d} \cdot \vec{c} = 0 \] Calculating the dot product: \[ (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k}) = x(1) + y(-2) + z(1) = 0 \] This simplifies to: \[ x - 2y + z = 0 \quad \text{(Equation 1)} \] ### Step 3: Use the dot product with \(\vec{a}\) From the condition \(\vec{d} \cdot \vec{a} = 6\): \[ (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) = 6 \] Calculating the dot product: \[ x(1) + y(1) + z(1) = 6 \] This simplifies to: \[ x + y + z = 6 \quad \text{(Equation 2)} \] ### Step 4: Use the dot product with \(\vec{b}\) From the condition \(\vec{d} \cdot \vec{b} = 11\): \[ (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{j} + 3\hat{k}) = 11 \] Calculating the dot product: \[ x(0) + y(1) + z(3) = 11 \] This simplifies to: \[ y + 3z = 11 \quad \text{(Equation 3)} \] ### Step 5: Solve the system of equations Now we have a system of three equations: 1. \(x - 2y + z = 0\) (Equation 1) 2. \(x + y + z = 6\) (Equation 2) 3. \(y + 3z = 11\) (Equation 3) #### Step 5.1: Solve for \(y\) and \(z\) From Equation 3: \[ y = 11 - 3z \] Substituting \(y\) into Equation 2: \[ x + (11 - 3z) + z = 6 \] This simplifies to: \[ x + 11 - 2z = 6 \implies x - 2z = -5 \quad \text{(Equation 4)} \] #### Step 5.2: Substitute \(y\) into Equation 1 Substituting \(y\) into Equation 1: \[ x - 2(11 - 3z) + z = 0 \] This simplifies to: \[ x - 22 + 6z + z = 0 \implies x + 7z = 22 \quad \text{(Equation 5)} \] ### Step 6: Solve Equations 4 and 5 Now we have: 1. \(x - 2z = -5\) (Equation 4) 2. \(x + 7z = 22\) (Equation 5) Subtract Equation 4 from Equation 5: \[ (x + 7z) - (x - 2z) = 22 + 5 \] This simplifies to: \[ 9z = 27 \implies z = 3 \] ### Step 7: Find \(y\) and \(x\) Substituting \(z = 3\) back into Equation 3: \[ y + 3(3) = 11 \implies y + 9 = 11 \implies y = 2 \] Substituting \(y = 2\) and \(z = 3\) into Equation 2: \[ x + 2 + 3 = 6 \implies x + 5 = 6 \implies x = 1 \] ### Step 8: Write the final vector \(\vec{d}\) Thus, we have: \[ x = 1, \quad y = 2, \quad z = 3 \] So, the vector \(\vec{d}\) is: \[ \vec{d} = 1\hat{i} + 2\hat{j} + 3\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k} \] ### Final Answer: \[ \vec{d} = \hat{i} + 2\hat{j} + 3\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

Let vec(a) = (hat(i) + 4 hat(j) + 2 hat(k)), vec(b)= ( 3 hat(i)- 2 hat(j)+7 hat(k)) and vec(c) = ( 2 hat(i)- hat(j) + 4 hat(k))." find a vector" vec(d)" which is perpendicular to both "vec(a) and vec(b)" such that " vec(c). vec(d)= 18.

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Long Answer Type Questions (I)
  1. If vec(a)=3hat(i)+hat(j)+9hat(k) and vec(b)=hat(i)+lambda hat(j)+3ha...

    Text Solution

    |

  2. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  3. Find the scalar product of the following pairs of vectors and the angl...

    Text Solution

    |

  4. Show that the vectors 2 hat i- hat j+ hat k , hat i-3 hat j-5 hat kan...

    Text Solution

    |

  5. The position vectors of the vertices of Delta ABC are : 3hat(i)-4hat(j...

    Text Solution

    |

  6. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, prove that vec(a) and vec(b) ar...

    Text Solution

    |

  7. If vec(a) and vec(b) are perpendicular vectors, show that : (vec(a...

    Text Solution

    |

  8. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  9. If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec ...

    Text Solution

    |

  10. Three vectors vec a,vec b and vec c satisfy the condition vec a+vec b+...

    Text Solution

    |

  11. If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a...

    Text Solution

    |

  12. The scalar product of the vector vec a= hat i+ hat j+ hat k with a un...

    Text Solution

    |

  13. Let -> a , -> b and -> c be three vectors such that | -> a|=3,| -...

    Text Solution

    |

  14. If |a|=a and | vec b|=b , prove that ( vec a/( vec a^2)- vec b/(b^2))^...

    Text Solution

    |

  15. If vec(a)=3hat(i)+hat(j)-4hat(k), vec(b)=6hat(i)+5hat(j)-2hat(k) and ...

    Text Solution

    |

  16. Let -> a= hat i+4 hat j+2 hat k , -> b=3 hat i-2 hat j+7 hat k and...

    Text Solution

    |

  17. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  18. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  19. Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c ...

    Text Solution

    |

  20. Let vec a= hat i- hat j ,\ vec b=3 hat j- hat k\ a n d\ vec c=7 hat...

    Text Solution

    |