Home
Class 12
MATHS
Prove that |vec(a)xx vec(b)|^(2)=|vec(a)...

Prove that `|vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2)`
`=|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))|`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

If |vec(a)|=2 and |vec(b)|=3 , then |vec(a) xx vec(b)|^(2)+ |vec(a).vec(b)|^(2) is equal to

Prove that |vec a + vec b| = sqrt (|vec a|^2 + |vec b|^2 + 2 vec a * vec b) .

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))