Home
Class 12
MATHS
If vec(a), vec(b), vec(c ) are position ...

If `vec(a), vec(b), vec(c )` are position vectors of non - collinear points A, B and C respectively, show that : `vec(a)xx vec(b)+vec(b)xx vec(c )+vec(c )xx vec(a)` is perpendicular to the plane ABC.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

vec a,vec b and vec c are the position vectors of points A,B and C respectively,prove that: vec a_(vec a)xvec b+vec bxvec c+vec cxvec a is vector perpendicular to the plane of triangle ABC.

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals