Home
Class 12
MATHS
(a) Prove that the normal to the plane c...

(a) Prove that the normal to the plane containing three points whose position vectors are `vec(a), vec(b), vec(c )` lie in the direction of `vec(b)xx vec(c )+vec(c )xx vec(a)+vec(a)xx vec(b)`.
(b) Find the unit vector perpendicular to the plane ABC, where the position vectors of A, B and C are : `2hat(i)-hat(j)+hat(k), hat(i)+hat(j)+2hat(k)` and `2hat(i)+hat(k)` respectively.

Text Solution

AI Generated Solution

The correct Answer is:
### Step-by-Step Solution #### Part (a) To prove that the normal to the plane containing three points whose position vectors are \(\vec{a}, \vec{b}, \vec{c}\) lies in the direction of \(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}\): 1. **Define the vectors**: Let \(\vec{A} = \vec{a}\), \(\vec{B} = \vec{b}\), and \(\vec{C} = \vec{c}\). 2. **Find vectors in the plane**: The vectors lying in the plane can be defined as: \[ \vec{AB} = \vec{B} - \vec{A} = \vec{b} - \vec{a} \] \[ \vec{AC} = \vec{C} - \vec{A} = \vec{c} - \vec{a} \] 3. **Normal vector to the plane**: The normal vector \(\vec{N}\) to the plane formed by \(\vec{AB}\) and \(\vec{AC}\) can be found using the cross product: \[ \vec{N} = \vec{AB} \times \vec{AC} \] 4. **Express \(\vec{N}\) using cross products**: Expanding \(\vec{N}\): \[ \vec{N} = (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \] Using properties of cross products: \[ \vec{N} = \vec{b} \times \vec{c} - \vec{a} \times \vec{c} - \vec{a} \times \vec{b} \] 5. **Rearranging**: Rearranging the terms gives: \[ \vec{N} = \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \] 6. **Conclusion**: Thus, we have shown that the normal to the plane containing the points with position vectors \(\vec{a}, \vec{b}, \vec{c}\) lies in the direction of \(\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}\). #### Part (b) To find the unit vector perpendicular to the plane ABC, where the position vectors of A, B, and C are given: 1. **Identify position vectors**: \[ \vec{A} = 2\hat{i} - \hat{j} + \hat{k}, \quad \vec{B} = \hat{i} + \hat{j} + 2\hat{k}, \quad \vec{C} = 2\hat{i} + \hat{k} \] 2. **Calculate vectors AB and AC**: \[ \vec{AB} = \vec{B} - \vec{A} = (\hat{i} + \hat{j} + 2\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{AC} = \vec{C} - \vec{A} = (2\hat{i} + \hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = \hat{j} \] 3. **Find the normal vector using cross product**: \[ \vec{N} = \vec{AB} \times \vec{AC} \] Using the determinant method: \[ \vec{N} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 1 \\ 0 & 1 & 0 \end{vmatrix} \] 4. **Calculate the determinant**: \[ \vec{N} = \hat{i}(0 - 1) - \hat{j}(0 - 0) + \hat{k}(-1 \cdot 1 - 0 \cdot 2) = -\hat{i} + 0\hat{j} - \hat{k} = -\hat{i} - \hat{k} \] 5. **Magnitude of the normal vector**: \[ |\vec{N}| = \sqrt{(-1)^2 + 0^2 + (-1)^2} = \sqrt{2} \] 6. **Unit vector**: \[ \text{Unit vector} = \frac{\vec{N}}{|\vec{N}|} = \frac{-\hat{i} - \hat{k}}{\sqrt{2}} = -\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors (vec a+vec b) and (vec a-vec b), where vec a=hat i+hat j+hat k,vec b=hat i+2hat j+3hat k

Find a unit vector perpendicular to both of the vectors vec a+vec b and vec a-vec b where vec a=hat i+hat j+hat k,vec b=hat i+2hat j+3hat k

Find a unit vector perpendicular to each of the vector vec a+vec b and vec a-vec b, where vec a=3hat i+2hat j+2hat k and vec b=hat i+2hat j-2hat k

Find a unit vector perpendicular to each of the vector vec a+vec b and vec a-vec b where vec a=3hat i+2hat j+2hat k and vec b=hat i+2hat j-2hat k

Find a unit vector perpendicular to each of the vectors vec a+vec b and vec a-vec b, where vec a=3hat i+2hat j+2hat k and vec b=hat i+2hat j-2hat k

Find the angle between the vectors vec a and vec b where: vec a=hat i+2hat j-hat k,vec b=hat i-hat j+hat k

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-hat(k)) and vec(b)=(hat(i)+hat(j)+hat(k)) is

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k