Home
Class 12
MATHS
The force respresented by 3hat(i)+2hat(k...

The force respresented by `3hat(i)+2hat(k)` is acting through the point `5hat(i)+4hat(j)-3hat(k)`. Find the moment about the point `hat(i)+3hat(j)+hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the moment of the force about a given point. Here’s the detailed solution: ### Step 1: Identify the Given Information - Force vector \( \mathbf{F} = 3\hat{i} + 2\hat{k} \) - Point where the force is acting \( \mathbf{A} = 5\hat{i} + 4\hat{j} - 3\hat{k} \) - Point about which we need to find the moment \( \mathbf{B} = \hat{i} + 3\hat{j} + \hat{k} \) ### Step 2: Calculate the Position Vector \( \mathbf{R} \) The position vector \( \mathbf{R} \) from point \( \mathbf{B} \) to point \( \mathbf{A} \) is given by: \[ \mathbf{R} = \mathbf{A} - \mathbf{B} \] Substituting the values: \[ \mathbf{R} = (5\hat{i} + 4\hat{j} - 3\hat{k}) - (\hat{i} + 3\hat{j} + \hat{k}) \] Calculating each component: \[ \mathbf{R} = (5 - 1)\hat{i} + (4 - 3)\hat{j} + (-3 - 1)\hat{k} = 4\hat{i} + 1\hat{j} - 4\hat{k} \] ### Step 3: Calculate the Moment \( \mathbf{M} \) The moment \( \mathbf{M} \) about point \( \mathbf{B} \) is given by the cross product: \[ \mathbf{M} = \mathbf{R} \times \mathbf{F} \] Substituting the vectors: \[ \mathbf{M} = (4\hat{i} + 1\hat{j} - 4\hat{k}) \times (3\hat{i} + 2\hat{k}) \] ### Step 4: Set Up the Determinant for the Cross Product Using the determinant to calculate the cross product: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & -4 \\ 3 & 0 & 2 \end{vmatrix} \] ### Step 5: Calculate the Determinant Calculating the determinant: 1. For \( \hat{i} \): \[ \hat{i} \cdot (1 \cdot 2 - 0 \cdot -4) = 2\hat{i} \] 2. For \( \hat{j} \): \[ -\hat{j} \cdot (4 \cdot 2 - 3 \cdot -4) = - (8 + 12) = -20\hat{j} \] 3. For \( \hat{k} \): \[ \hat{k} \cdot (4 \cdot 0 - 3 \cdot 1) = -3\hat{k} \] Combining these results: \[ \mathbf{M} = 2\hat{i} - 20\hat{j} - 3\hat{k} \] ### Step 6: Calculate the Magnitude of the Moment The magnitude of the moment vector is given by: \[ |\mathbf{M}| = \sqrt{(2)^2 + (-20)^2 + (-3)^2} \] Calculating: \[ |\mathbf{M}| = \sqrt{4 + 400 + 9} = \sqrt{413} \] ### Final Result The moment about the point \( \mathbf{B} \) is: \[ \mathbf{M} = 2\hat{i} - 20\hat{j} - 3\hat{k} \] And the magnitude of the moment is: \[ |\mathbf{M}| = \sqrt{413} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

Find the moment (torque) about the point hat(i)+2hat(j)+3hat(k) of a force represented by hat(i)+hat(j)+hat(k) acting through the point -2hat(i)+3hat(j)+hat(k) .

Find the moment about the point hat(i)+2hat(j)-hat(k) of a force represented by hat(i)+2hat(j)+hat(k) acting through the point 2hat(i)+3hat(j)+hat(k) .

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

Two unlike forces of equal magnitudes 3hat(i)+hat(k) and -3hat(i)-hat(k) acting at the points hat(i)+2hat(j)-hat(k) and 2hat(i)-hat(j)+3hat(k) respectively. Find the moment of the coupie formed by the forces.

What is the moment about the point hat(i) +2hat(j)-hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2hat(i) - hat(j)+3hat(k) ?