Home
Class 12
MATHS
Find the moment about the point hat(i)+2...

Find the moment about the point `hat(i)+2hat(j)-hat(k)` of a force represented by `hat(i)+2hat(j)+hat(k)` acting through the point `2hat(i)+3hat(j)+hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the moment of a force about a given point, we can follow these steps: ### Step 1: Identify the vectors We are given: - The point about which we need to find the moment: \( A = \hat{i} + 2\hat{j} - \hat{k} \) - The point through which the force acts: \( P = 2\hat{i} + 3\hat{j} + \hat{k} \) - The force vector: \( F = \hat{i} + 2\hat{j} + \hat{k} \) ### Step 2: Find the position vector \( \vec{r} \) The position vector \( \vec{r} \) from point \( A \) to point \( P \) is given by: \[ \vec{r} = \vec{P} - \vec{A} \] Calculating this: \[ \vec{r} = (2\hat{i} + 3\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} - \hat{k}) \] \[ = (2 - 1)\hat{i} + (3 - 2)\hat{j} + (1 + 1)\hat{k} \] \[ = \hat{i} + \hat{j} + 2\hat{k} \] ### Step 3: Calculate the moment \( \vec{M} \) The moment \( \vec{M} \) about point \( A \) due to the force \( F \) is given by the cross product: \[ \vec{M} = \vec{r} \times \vec{F} \] Substituting the vectors: \[ \vec{M} = (\hat{i} + \hat{j} + 2\hat{k}) \times (\hat{i} + 2\hat{j} + \hat{k}) \] ### Step 4: Set up the determinant for the cross product The cross product can be calculated using the determinant: \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant Calculating the determinant: \[ \vec{M} = \hat{i} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (2)(2) = 1 - 4 = -3 \) 2. \( \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1)(1) - (2)(1) = 1 - 2 = -1 \) 3. \( \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(1) = 2 - 1 = 1 \) Substituting back into the equation for \( \vec{M} \): \[ \vec{M} = -3\hat{i} + 1\hat{j} + 1\hat{k} \] ### Step 6: Final result Thus, the moment about the point \( A \) is: \[ \vec{M} = -3\hat{i} + \hat{j} + \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

What is the moment about the point hat(i) +2hat(j)-hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2hat(i) - hat(j)+3hat(k) ?

Find the moment (torque) about the point hat(i)+2hat(j)+3hat(k) of a force represented by hat(i)+hat(j)+hat(k) acting through the point -2hat(i)+3hat(j)+hat(k) .

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

Find the moment about the point hat i+2hat j+3hat k of a force represented by hat i+hat j+hat k acting through the point 2hat i+3hat j+hat k

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The force respresented by 3hat(i)+2hat(k) is acting through the point 5hat(i)+4hat(j)-3hat(k) . Find the moment about the point hat(i)+3hat(j)+hat(k) .

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

Find the vector moment of the forces : hat(i)+2hat(j)-3hat(k), 2hat(i)+3hat(j)+4hat(k) and -hat(i)-hat(j)+hat(k) acting on a particle at a point P (0, 1, 2) about the point A(1, -2, 0) .