Home
Class 12
MATHS
If P(E)=(7)/(13),P(F)=(9)/(13) and P(E n...

If `P(E)=(7)/(13),P(F)=(9)/(13)` and `P(E nn F)=(4)/(13)`, then `P(E//F)`__________.

A

`(4)/(7)`

B

`(2)/(9)`

C

`(4)/(9)`

D

`(2)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P(E|F) \), we can use the formula for conditional probability: \[ P(E|F) = \frac{P(E \cap F)}{P(F)} \] ### Step 1: Identify the given probabilities We are given: - \( P(E) = \frac{7}{13} \) - \( P(F) = \frac{9}{13} \) - \( P(E \cap F) = \frac{4}{13} \) ### Step 2: Substitute the values into the formula Now, we can substitute the values into the formula for conditional probability: \[ P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{4}{13}}{\frac{9}{13}} \] ### Step 3: Simplify the expression To simplify the fraction, we can multiply by the reciprocal of the denominator: \[ P(E|F) = \frac{4}{13} \times \frac{13}{9} \] ### Step 4: Cancel out the common terms The \( 13 \) in the numerator and the denominator cancels out: \[ P(E|F) = \frac{4}{9} \] ### Final Answer Thus, the probability \( P(E|F) \) is: \[ \boxed{\frac{4}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Select the correct option)|10 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Fill in the blanks)|7 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

If P(A)(7)/(13),P(B)=(9)/(13) and P(A nn B)=(4)/(13), find P((A)/(B))

If P(E)=(6)/(11),P(F)=(5)/(11) and P(E uu F)=(7)/(11) , find P(F//E) .

If P(A)=(7)/(13)P(B)=(9)/(13) and P(A nn B)=(4)/(13) ,evaluate quad P(A|B)

If P(A)=7/(13),\ P(B)=9/(13)a n d\ P(AnnB)=4/(13),fin d\ P(A//B)dot

Let P(A) = (7)/(13) , P(B) = (9)/(13) and P (A cap B) = (4)/(13) . Then P (A | B) is equal to

If P(E)=0.6,P(F)=0.3 and P(E nn F)=0.2 , then find P(E//F) .

If P(A)=7/13,P(B)=9/13 and P(AcapB)=4/13 , then P(A'/B) is equal to

If P (A) = 7/3, P (B)= 9/13, "and" P(A cap B) = 4/13 , then find P (A/B)

Let E and F be two events with P(E)=(1)/(3),P(F)=(3)/(4),P(E uu F)=(11)/(12) .Then P(E-F)+P(F-E) equals