Home
Class 12
MATHS
If the projection of vec(i)+3vec(j)+7vec...

If the projection of `vec(i)+3vec(j)+7vec(k)` on `2vec(i)-3vec(j)+6vec(k)` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{a} = \vec{i} + 3\vec{j} + 7\vec{k}\) onto the vector \(\vec{b} = 2\vec{i} - 3\vec{j} + 6\vec{k}\), we can use the formula for the projection of one vector onto another. ### Step-by-step solution: 1. **Identify the vectors:** \[ \vec{a} = \vec{i} + 3\vec{j} + 7\vec{k} \] \[ \vec{b} = 2\vec{i} - 3\vec{j} + 6\vec{k} \] 2. **Calculate the dot product \(\vec{a} \cdot \vec{b}\):** \[ \vec{a} \cdot \vec{b} = (1)(2) + (3)(-3) + (7)(6) \] \[ = 2 - 9 + 42 = 35 \] 3. **Calculate the magnitude of vector \(\vec{b}\):** \[ |\vec{b}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} \] \[ = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] 4. **Use the projection formula:** The projection of \(\vec{a}\) onto \(\vec{b}\) is given by: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] 5. **Calculate \(|\vec{b}|^2\):** \[ |\vec{b}|^2 = 7^2 = 49 \] 6. **Substitute the values into the projection formula:** \[ \text{proj}_{\vec{b}} \vec{a} = \frac{35}{49} \vec{b} \] \[ = \frac{5}{7} \vec{b} \] 7. **Substitute \(\vec{b}\) back into the equation:** \[ = \frac{5}{7} (2\vec{i} - 3\vec{j} + 6\vec{k}) \] \[ = \frac{10}{7} \vec{i} - \frac{15}{7} \vec{j} + \frac{30}{7} \vec{k} \] ### Final Answer: The projection of \(\vec{i} + 3\vec{j} + 7\vec{k}\) on \(2\vec{i} - 3\vec{j} + 6\vec{k}\) is: \[ \frac{10}{7} \vec{i} - \frac{15}{7} \vec{j} + \frac{30}{7} \vec{k} \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Answer the following questions)|22 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Select the correct option)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

| 2vec i-3vec j + vec k | =

If the vectors 2vec(i)-qvec(j)+3vec(k) and 4vec(i)-5vec(j)+6vec(k) are collinear, the value of q is

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

Examine if vec(i) - 3vec(j) + 2vec(k), 2vec(i) - 4vec(j) - vec(k) and 3vec(i) + 2vec(j) - vec(k) are linearly independent or dependent .

Find the angle between the vectors : vec(a)=3vec(i)-2vec(j)+vec(k) and vec(b)=vec(i)-2vec(j)-3vec(k)

The value of lambda for two perpendicular vectors vec(A)=2vec(i)+lambdavec(j)+vec(k) and vec(B)=4vec(i)-2vec(j)-2vec(k) is :-

The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k)) momentum vec(P)= (3vec(i)+4vec(j)-2vec(k)) . The angular momentum is perpendicular to

Find the value of: (vec j xxvec k) * (3vec i + 2vec j-vec k)

The position vectors of the points A and B are vec i + 2 vec j + 3 vec k and 2 vec i - vec j - vec k respectively. Find the projection of vec (AB) on the vector vec i + vec j + vec k . Also find the resolved part of vec (AB) in that direction.

Vector of length of 3 unit which is perpendicular to vec i + vec j + vec k and lies in the plane of vec i + vec j + vec k and 2vec i-3vec j, is (1) (3) / (sqrt ( 6)) (vec i-2vec j + vec k) (2) (3) / (sqrt (6)) (2vec i-vec j-vec k) (3) (3) / (sqrt (114)) ( 8vec i-7vec j-vec k) (4) (3) / (sqrt (114)) (- 7vec i + 8vec j-vec k)