Home
Class 12
MATHS
Find: int(x^(3))/(sqrt(1-x^(8)))dx....

Find: `int(x^(3))/(sqrt(1-x^(8)))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^3}{\sqrt{1 - x^8}} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = x^4 \). Then, we differentiate to find \( dx \): \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ x^8 = (x^4)^2 = t^2 \] Thus, we can rewrite the integral as: \[ \int \frac{x^3}{\sqrt{1 - x^8}} \, dx = \int \frac{x^3}{\sqrt{1 - t^2}} \cdot \frac{dt}{4x^3} \] This simplifies to: \[ \int \frac{1}{\sqrt{1 - t^2}} \cdot \frac{dt}{4} \] ### Step 3: Factor Out Constants We can factor out the constant \(\frac{1}{4}\): \[ \frac{1}{4} \int \frac{1}{\sqrt{1 - t^2}} \, dt \] ### Step 4: Integrate The integral \(\int \frac{1}{\sqrt{1 - t^2}} \, dt\) is a standard integral that equals \(\sin^{-1}(t)\): \[ \frac{1}{4} \sin^{-1}(t) + C \] ### Step 5: Substitute Back Now, we substitute back \( t = x^4 \): \[ \frac{1}{4} \sin^{-1}(x^4) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^3}{\sqrt{1 - x^8}} \, dx = \frac{1}{4} \sin^{-1}(x^4) + C \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Fill in the blanks)|7 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(3))/(sqrt(x^(8)+4))dx

8. int((x+a)^(3))/(sqrt(x))dx

Evaluate: int(x^(5))/(sqrt(1+x^(3)))dx

Evaluate int (x ^(3))/( sqrt (1 + x ^(4))) dx

Evaluate the following integrals: int((1+x)^(3))/(sqrt(x))dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

Find int(sqrt(x))/(sqrt(a^(3)-x^(3)))dx

Integrate: int x^3/sqrt(1-x^8) dx

int(dx)/(sqrt(3x^2+8))=

int(1)/(sqrt((8)/(3)x-x^(2)))dx

MODERN PUBLICATION-PROBABILITY-MOCK TEST (Answer the following questions)
  1. Evaluate int-1 1sin^5xcos^4x""dx

    Text Solution

    |

  2. Find intxcosxdx

    Text Solution

    |

  3. Find: int(x^(3))/(sqrt(1-x^(8)))dx.

    Text Solution

    |

  4. int1/(sqrt(5-4x-2x^2))dx

    Text Solution

    |

  5. Find the integrating factor of xlogx(dy)/(dx)+y=2-logx.

    Text Solution

    |

  6. If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=(pi)/(4), find the valu...

    Text Solution

    |

  7. Let T be the set of all triangles in a plane with R a relation in T g...

    Text Solution

    |

  8. Find (dy)/(dx), when: (cosx)^(y)=(cosy)^(x)

    Text Solution

    |

  9. Find the equation of the tangent to the curve x^(2) + 3y = 3, which is...

    Text Solution

    |

  10. Prove that: [vec(a)" "vec(b)" "vec( c )+vec(d)]=[vec(a)" "vec(b)" "vec...

    Text Solution

    |

  11. Find the values of lamda and mu for which (2hat+6hatj+27hatk)xx(hati+l...

    Text Solution

    |

  12. Find the points on the line (x+2)/3=(y+1)/2=(z-3)/2\ at a distance...

    Text Solution

    |

  13. If A and B are two independent events, then the probability of occu...

    Text Solution

    |

  14. Let f: W to W be defined by: f(n)={{:(n-1",","if n is odd"),(n+1",","i...

    Text Solution

    |

  15. Differentiate sin^(-1)((2^(x+1))/(1+4^(x))) w.r.t. x.

    Text Solution

    |

  16. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  17. Find the general solution of the differential equation: cos^(2)x(dy)/(...

    Text Solution

    |

  18. Evaluate the definite integrals int0pi/2(cos^2x dx)/(cos^2x+4sin^2x...

    Text Solution

    |

  19. Bag I contains 3 red and 4 black balls and Bag II contains 4 red an...

    Text Solution

    |

  20. three numbers are selected at random (without replacement) from first ...

    Text Solution

    |