Home
Class 12
MATHS
If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/...

If `tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=(pi)/(4)`, find the value of 'x'.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x-2}{x-4}\right) + \tan^{-1}\left(\frac{x+2}{x+4}\right) = \frac{\pi}{4}, \] we can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Let \[ a = \frac{x-2}{x-4} \quad \text{and} \quad b = \frac{x+2}{x+4}. \] ### Step 2: Calculate \(a + b\) Now, we calculate \(a + b\): \[ a + b = \frac{x-2}{x-4} + \frac{x+2}{x+4}. \] To add these fractions, we need a common denominator: \[ a + b = \frac{(x-2)(x+4) + (x+2)(x-4)}{(x-4)(x+4)}. \] ### Step 3: Expand the numerator Expanding the numerator: \[ (x-2)(x+4) = x^2 + 4x - 2x - 8 = x^2 + 2x - 8, \] \[ (x+2)(x-4) = x^2 - 4x + 2x - 8 = x^2 - 2x - 8. \] Now, combine these: \[ a + b = \frac{(x^2 + 2x - 8) + (x^2 - 2x - 8)}{(x-4)(x+4)} = \frac{2x^2 - 16}{(x-4)(x+4)}. \] ### Step 4: Calculate \(ab\) Next, we calculate \(ab\): \[ ab = \left(\frac{x-2}{x-4}\right)\left(\frac{x+2}{x+4}\right) = \frac{(x-2)(x+2)}{(x-4)(x+4)} = \frac{x^2 - 4}{x^2 - 16}. \] ### Step 5: Substitute into the inverse tangent formula Now, substituting \(a + b\) and \(ab\) into the inverse tangent formula: \[ \tan^{-1}\left(\frac{2x^2 - 16}{(x-4)(x+4)(1 - \frac{x^2 - 4}{x^2 - 16})}\right) = \frac{\pi}{4}. \] Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we set the argument of the tangent equal to 1: \[ \frac{2x^2 - 16}{(x-4)(x+4)(1 - \frac{x^2 - 4}{x^2 - 16})} = 1. \] ### Step 6: Solve the equation Cross-multiplying gives: \[ 2x^2 - 16 = (x-4)(x+4)\left(1 - \frac{x^2 - 4}{x^2 - 16}\right). \] The left-hand side simplifies to: \[ 2x^2 - 16 = 2x^2 - 16 - (x^2 - 4). \] This leads to: \[ 2x^2 - 16 = 2x^2 - 16 - (x^2 - 4). \] Simplifying, we find: \[ 0 = -x^2 + 4 \implies x^2 = 4 \implies x = \pm 2. \] ### Step 7: Verify solutions We need to check if both solutions satisfy the original equation. 1. For \(x = 2\): \[ \tan^{-1}\left(\frac{0}{-2}\right) + \tan^{-1}\left(\frac{4}{6}\right) \neq \frac{\pi}{4}. \] 2. For \(x = -2\): \[ \tan^{-1}\left(\frac{-4}{-6}\right) + \tan^{-1}\left(\frac{0}{2}\right) = \frac{\pi}{4}. \] Thus, the only valid solution is: \[ \boxed{-2}. \]
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Fill in the blanks)|7 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((x-3)/(x-4))+tan^(-1)((x+3)/(x+4))=(pi)/(4)

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

If tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4) ,then find the value of x .

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

If tan^-1 ((x-1)/(x-2)) + tan^-1 ((x+1)/(x+2)) = π/4 then find the value of x.

MODERN PUBLICATION-PROBABILITY-MOCK TEST (Answer the following questions)
  1. Find intxcosxdx

    Text Solution

    |

  2. Find: int(x^(3))/(sqrt(1-x^(8)))dx.

    Text Solution

    |

  3. int1/(sqrt(5-4x-2x^2))dx

    Text Solution

    |

  4. Find the integrating factor of xlogx(dy)/(dx)+y=2-logx.

    Text Solution

    |

  5. If tan^(-1)((x-2)/(x-4))+tan^(-1)((x+2)/(x+4))=(pi)/(4), find the valu...

    Text Solution

    |

  6. Let T be the set of all triangles in a plane with R a relation in T g...

    Text Solution

    |

  7. Find (dy)/(dx), when: (cosx)^(y)=(cosy)^(x)

    Text Solution

    |

  8. Find the equation of the tangent to the curve x^(2) + 3y = 3, which is...

    Text Solution

    |

  9. Prove that: [vec(a)" "vec(b)" "vec( c )+vec(d)]=[vec(a)" "vec(b)" "vec...

    Text Solution

    |

  10. Find the values of lamda and mu for which (2hat+6hatj+27hatk)xx(hati+l...

    Text Solution

    |

  11. Find the points on the line (x+2)/3=(y+1)/2=(z-3)/2\ at a distance...

    Text Solution

    |

  12. If A and B are two independent events, then the probability of occu...

    Text Solution

    |

  13. Let f: W to W be defined by: f(n)={{:(n-1",","if n is odd"),(n+1",","i...

    Text Solution

    |

  14. Differentiate sin^(-1)((2^(x+1))/(1+4^(x))) w.r.t. x.

    Text Solution

    |

  15. If y={"log"(x+sqrt(x^2+1))}^2,"s h o wt h a t"(1+x^2)(d^2y)/(dx^2)+x(...

    Text Solution

    |

  16. Find the general solution of the differential equation: cos^(2)x(dy)/(...

    Text Solution

    |

  17. Evaluate the definite integrals int0pi/2(cos^2x dx)/(cos^2x+4sin^2x...

    Text Solution

    |

  18. Bag I contains 3 red and 4 black balls and Bag II contains 4 red an...

    Text Solution

    |

  19. three numbers are selected at random (without replacement) from first ...

    Text Solution

    |

  20. A factory manufactures two types of screws, A and B. Each type of scre...

    Text Solution

    |