Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(x(e^(2+x)-e^(2)))/(1-cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^{2+x} - e^2)}{1 - \cos x}, \] we first check the form of the limit by substituting \(x = 0\): - The numerator becomes \(0(e^{2+0} - e^2) = 0(1 - 1) = 0\). - The denominator becomes \(1 - \cos(0) = 1 - 1 = 0\). Since we have a \( \frac{0}{0} \) indeterminate form, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator separately. ### Step 1: Differentiate the numerator and denominator The numerator is \(x(e^{2+x} - e^2)\). We will use the product rule to differentiate it: Let \(u = x\) and \(v = e^{2+x} - e^2\). Then, \[ \frac{du}{dx} = 1, \] \[ \frac{dv}{dx} = e^{2+x} \cdot \frac{d}{dx}(2+x) = e^{2+x} \cdot 1 = e^{2+x}. \] Using the product rule: \[ \frac{d}{dx}[u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} = x \cdot e^{2+x} + (e^{2+x} - e^2) \cdot 1. \] Thus, the derivative of the numerator is: \[ x e^{2+x} + (e^{2+x} - e^2). \] Now, simplifying this gives: \[ x e^{2+x} + e^{2+x} - e^2 = (x + 1)e^{2+x} - e^2. \] The derivative of the denominator \(1 - \cos x\) is: \[ \frac{d}{dx}[1 - \cos x] = \sin x. \] ### Step 2: Rewrite the limit using L'Hôpital's Rule Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{(x + 1)e^{2+x} - e^2}{\sin x}. \] ### Step 3: Substitute \(x = 0\) again Substituting \(x = 0\): - The numerator becomes \((0 + 1)e^{2+0} - e^2 = e^2 - e^2 = 0\). - The denominator becomes \(\sin(0) = 0\). We again have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Now we differentiate the numerator and denominator again. For the numerator \((x + 1)e^{2+x} - e^2\): Using the product rule again: Let \(u = x + 1\) and \(v = e^{2+x}\). Then, \[ \frac{du}{dx} = 1, \] \[ \frac{dv}{dx} = e^{2+x}. \] Using the product rule: \[ \frac{d}{dx}[u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} = (x + 1)e^{2+x} + e^{2+x} \cdot 1 = (x + 2)e^{2+x}. \] The derivative of the constant \(e^2\) is \(0\). Thus, the derivative of the numerator is: \[ (x + 2)e^{2+x}. \] The derivative of the denominator \(\sin x\) is \(\cos x\). ### Step 5: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{(x + 2)e^{2+x}}{\cos x}. \] ### Step 6: Substitute \(x = 0\) again Substituting \(x = 0\): - The numerator becomes \((0 + 2)e^{2+0} = 2e^2\). - The denominator becomes \(\cos(0) = 1\). Thus, the limit evaluates to: \[ \frac{2e^2}{1} = 2e^2. \] ### Final Answer The limit is \[ \boxed{2e^2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)e^(x)

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/x

Evaluate the following limits : lim_(x to 2)(e^(x)-e^(2))/(x-2)

Evaluate the following limits : lim_(x to 0)((e^(x)-e^(-x))/sinx)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/sinx .

Evaluate the following limits: lim_(xrarr0)((e^(2+x)-e^(2))/(x))

Evaluate the following limits: lim_(xrarr0)((e^(2+x)-e^(2))/(x))

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |