Home
Class 11
MATHS
lim(x to pi/2)(1-sinx)/(cosx) is equal t...

`lim_(x to pi/2)(1-sinx)/(cosx)` is equal to :

A

0

B

-1

C

1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the expression to check if it results in an indeterminate form. \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Thus, we have: \[ \frac{0}{0} \] ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. The numerator is \( 1 - \sin x \) and the denominator is \( \cos x \). - The derivative of the numerator \( 1 - \sin x \) is \( -\cos x \). - The derivative of the denominator \( \cos x \) is \( -\sin x \). Thus, we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\sin x} \] ### Step 3: Simplify the Limit Now we simplify the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\sin x} \] ### Step 4: Substitute \( x = \frac{\pi}{2} \) Again Now we substitute \( x = \frac{\pi}{2} \) again: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] \[ \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, we have: \[ \frac{0}{1} = 0 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0)(sinx)/(1+cosx) is equal to :

lim_(xto pi/2)(pi-2x)^(cosx) is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

Evaluate lim_(xto2)(3+sinx)/(cosx)

(cosx)/(1+sinx)+(1+sinx)/(cosx) is equal to: (cosx)/(1+sinx)+(1+sinx)/(cosx) किसके बराबर है:

What is lim_(xto0) (2(1-cosx))/(x^(2) equal to?

lim_(xto pi//3) (2sin(x-pi//3))/(1-2cosx) is