Home
Class 11
MATHS
If "f"("x")="x s i n x\ t h e n\ fprime^...

If `"f"("x")="x s i n x\ t h e n\ fprime^"("pi"//2)=` `1/2` b. 1 c. 0 d. `-1`

A

0

B

1

C

-1

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

The value of int_0^(pi//2)cosx\ e^(s in x)dx\ i s 1 b. e-1 c. 0 d. -1

If f(x)=(x^(n)-a^(n))/(x-a),backslash t he n backslash fprime ^(^^)(a) is 1 b.(1)/(2) c.0 d.does not exist

Comprehension 1 Let a^((log)_b x)=c w h e r e a , b , c & x are parameters. On the basis of above information, answer the following questions: If b=(log)_(sqrt(3))3, c=2(log)_bsqrt(b) a n d s intheta=a(w h e r e x >1) t h e n theta can be a.pi/4 b. (3pi)/2 c. pi/2 d. 0

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

If F(t)=int(x+y)dt then the value of F(pi/2)-F(0) is 1 (b) -1 (c) e^(pi//2) (d) 0

If |x^n x^(n+2)x^(2n)1x^a a x^(n+5)x^(a+6)x^(2n+5)|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a)-1 (b). 1 ( c.) 0 (d).2

If f(n)=int_(0)^(x)[cos t]dt, where x in(2n pi,2n pi+(pi)/(2));n in N and [*] denotes the greatest integer function.Then, the value of f((1)/(pi))| is ...

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is: