Home
Class 11
MATHS
d/(dx)(cotx) is :...

`d/(dx)(cotx)` is :

A

`tanx`

B

`-cosec^(2)x`

C

`-cosecxcotx`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( \cot x \), we can use the following steps: ### Step 1: Recall the definition of \( \cot x \) The cotangent function can be expressed as: \[ \cot x = \frac{\cos x}{\sin x} \] ### Step 2: Use the quotient rule To differentiate \( \cot x \), we apply the quotient rule, which states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let \( u = \cos x \) and \( v = \sin x \). ### Step 3: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) We know: \[ \frac{du}{dx} = -\sin x \quad \text{(derivative of } \cos x\text{)} \] \[ \frac{dv}{dx} = \cos x \quad \text{(derivative of } \sin x\text{)} \] ### Step 4: Substitute into the quotient rule Now substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{d}{dx}(\cot x) = \frac{\sin x (-\sin x) - \cos x \cos x}{\sin^2 x} \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{d}{dx}(\cot x) = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ \frac{d}{dx}(\cot x) = \frac{-1}{\sin^2 x} \] ### Step 6: Final result Thus, we have: \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] ### Summary The derivative of \( \cot x \) is: \[ \frac{d}{dx}(\cot x) = -\csc^2 x \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(secx) is :

State Whether it is true or false. d/(dx)(cotx)=sec^(2)x.

d/dx( tanx ) =

(d)/(dx)((1+cotx)/(1-cotx))

(d)/(dx)((cotx-tanx)/(cotx+tanx))=

d/(dx)(x^(5)cotx)=…………………. .

d/(dx)(xcosecx)=…………………… .

(d)/(dx)|x|

d/(dx) [log(logx)] =

(d)/(dx)sin x