Home
Class 11
MATHS
The value of lim(x to 0)(e^(4x)-1)/x is ...

The value of `lim_(x to 0)(e^(4x)-1)/x` is :

A

1

B

2

C

4

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0)(e^(2x)-1)/(x) is :

The value of lim_(x to 0) ((e^(x)-1)/(x)) is

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

The value of lim_(x rarr0)(e^(x)-x-1)/(cos x-1) is

The value of lim_(x rarr0)(e^(x^(2))-1)/(x) is-

The value of lim_(x rarr0)(e^(x)-1-x)/(x^(2)) equals to

The value of Lim_(xto0) ((e)/(4x)-(e)/(2x(e^(ex)+1))) equals

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is