Home
Class 11
MATHS
If f(x)=2x^(2)," find "(f(3*8)-f(4))/(3*...

If `f(x)=2x^(2)," find "(f(3*8)-f(4))/(3*8-4):`

A

`1*56`

B

`156`

C

`15*6`

D

`0*156`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(\frac{f(3.8) - f(4)}{3.8 - 4}\) given that \(f(x) = 2x^2\). ### Step-by-Step Solution: 1. **Calculate \(f(3.8)\)**: \[ f(3.8) = 2 \times (3.8)^2 \] First, calculate \((3.8)^2\): \[ (3.8)^2 = 14.44 \] Now, substitute back into the function: \[ f(3.8) = 2 \times 14.44 = 28.88 \] 2. **Calculate \(f(4)\)**: \[ f(4) = 2 \times (4)^2 \] Calculate \((4)^2\): \[ (4)^2 = 16 \] Now, substitute back into the function: \[ f(4) = 2 \times 16 = 32 \] 3. **Substitute the values into the expression**: Now we substitute \(f(3.8)\) and \(f(4)\) into the expression: \[ \frac{f(3.8) - f(4)}{3.8 - 4} = \frac{28.88 - 32}{3.8 - 4} \] 4. **Calculate the numerator**: \[ 28.88 - 32 = -3.12 \] 5. **Calculate the denominator**: \[ 3.8 - 4 = -0.2 \] 6. **Combine the results**: Now we can substitute the values into the expression: \[ \frac{-3.12}{-0.2} \] 7. **Simplify the fraction**: Dividing the numerator by the denominator: \[ \frac{-3.12}{-0.2} = 15.6 \] ### Final Answer: The final result is: \[ \boxed{15.6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=8x^(3)-2x,f(2)=8, find f(x)

If f'(x)=8x^(3)-2x,f(2)=8, find f(x)

If f(x)=x^(3)+7x^(2)+8x-9, find f 4)

If f(x)=x^(3)+3x^(2)-2x+4, find f(-2)+f(2)-f(0)

If f(x) = x^3 , then find f^(-1 )( 8 )

If f'(x)=(1)/(x)+x^(2) and f(1)=(4)/(3) then find the value of f(x)

(i) If f(x) = 3x^(4)- 5x^(2) + 7, " find " f(x-1) (ii) If f(x) = x^(2) - 3x + 4 , then find the values of x satisfying f(x) = f(2x+1)

If f(x+1/x)=x^2+1/x^2+8 then f(3), f(5), f(-1)