Home
Class 11
MATHS
If f(x)=x^(3)-27, then f^(')(x)=……………………...

If `f(x)=x^(3)-27`, then `f^(')(x)=……………………… .`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = x^3 - 27 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = x^3 - 27 \] 2. **Apply the power rule for differentiation**: The power rule states that if \( f(x) = x^n \), then the derivative \( f'(x) = n \cdot x^{n-1} \). In our case, we have two terms: \( x^3 \) and \(-27\). 3. **Differentiate each term**: - For the term \( x^3 \): \[ \frac{d}{dx}(x^3) = 3 \cdot x^{3-1} = 3x^2 \] - For the constant term \(-27\): \[ \frac{d}{dx}(-27) = 0 \] 4. **Combine the results**: Now, we combine the derivatives of both terms: \[ f'(x) = 3x^2 + 0 = 3x^2 \] 5. **Final answer**: Thus, the derivative of the function is: \[ f'(x) = 3x^2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2x+3)/(x-2) , then: (f@f)(x)=

If f(x)=(7)^(x^3+3x) then find f^'(x)

If f(x)=|x-3|, then f(3) equals

If f(x) = |x+3|, then f'(3)=

If f(x)=3x^(3)-9x^(2)-27x+15 , then

If f(x)=x+3, then f(x)+f(-x) is equal to

If f:R rarr R,f(x)=x^(3)+x, then f is

(2) If f(x)=x+(1)/(x) , then [f(x)]^(3)-f(x^(3)) is equal to

If f(x)=x^(3)+(1)/(x^(3)), then f(x)+f((1)/(x)) is equal to

If f ( x ) = |x - 3| , then f' ( 3 ) is