Home
Class 11
MATHS
If f(x)=4x^(3)+7, then f^(')(x)=…………………....

If `f(x)=4x^(3)+7`, then `f^(')(x)=…………………. .`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = 4x^3 + 7 \), we will use the rules of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = 4x^3 + 7 \] 2. **Differentiate each term separately**: - The first term is \( 4x^3 \). - The second term is \( 7 \) (a constant). 3. **Apply the power rule**: - The power rule states that if \( f(x) = ax^n \), then \( f'(x) = n \cdot ax^{n-1} \). - For the term \( 4x^3 \): \[ \text{Differentiate: } f'(x) = 3 \cdot 4x^{3-1} = 12x^2 \] 4. **Differentiate the constant**: - The derivative of a constant is \( 0 \): \[ \text{Differentiate: } \frac{d}{dx}(7) = 0 \] 5. **Combine the results**: - Now, we combine the derivatives of both terms: \[ f'(x) = 12x^2 + 0 = 12x^2 \] ### Final Answer: \[ f'(x) = 12x^2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=4x^(3)-1 , then f^(')(x)=…………………. .

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

If f(x)=-4-(x-7)^(3), write f^(-1)(x)

If f(x)=[4-(x-7)^(3)] ,then f^(-1)(x) is

If f(x)=2x^(3)+7x-5 then f^(-1)(4) is :

If f(x)=(7)^(x^3+3x) then find f^'(x)

If f(x)=7x-8, then f'(3)=

If f(x)=x^(2)+2x+7, find f'(3)

If f(x)=3x+4 then: f((x-4)/(3))=

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is