Home
Class 11
MATHS
If f(x)=4x^(3)-1, then f^(')(x)=…………………....

If `f(x)=4x^(3)-1`, then `f^(')(x)=…………………. .`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = 4x^3 - 1 \), we will apply the power rule of differentiation. The power rule states that if \( f(x) = ax^n \), then the derivative \( f'(x) = nax^{n-1} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = 4x^3 - 1 \] 2. **Differentiate each term**: - The first term is \( 4x^3 \): - Using the power rule: \[ \frac{d}{dx}(4x^3) = 4 \cdot 3x^{3-1} = 12x^2 \] - The second term is \( -1 \): - The derivative of a constant is 0: \[ \frac{d}{dx}(-1) = 0 \] 3. **Combine the results**: \[ f'(x) = 12x^2 + 0 = 12x^2 \] ### Final Answer: \[ f'(x) = 12x^2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=4x^(3)+7 , then f^(')(x)=…………………. .

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

If f(x)=-4-(x-7)^(3), write f^(-1)(x)

If f(x)=[4-(x-7)^(3)] ,then f^(-1)(x) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f'(x)=3x^(2)+2x-4 and f(1)=3, then f(x)=

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

If f(x)=4x^(3)+3x^(2)+3x+4, then x^(3)f((1)/(x)) isequal to

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If g(x)=(f(x)-f(-x))/2 defined over [-3,3] f(x)=2x^(2)-4x+1 , then int_(-3)^(3)g(x)dx is equal to