Home
Class 11
MATHS
d/(dx)(xcosecx)=…………………… ....

`d/(dx)(xcosecx)=……………………` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x \cdot \csc x \), we will use the product rule of differentiation. The product rule states that if you have two functions multiplied together, \( u \) and \( v \), then the derivative \( \frac{d}{dx}(uv) \) is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] In our case, let: - \( u = x \) - \( v = \csc x \) ### Step 1: Differentiate \( u \) and \( v \) 1. Differentiate \( u = x \): \[ \frac{du}{dx} = 1 \] 2. Differentiate \( v = \csc x \): The derivative of \( \csc x \) is: \[ \frac{dv}{dx} = -\csc x \cot x \] ### Step 2: Apply the Product Rule Now, applying the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = x \cdot (-\csc x \cot x) + \csc x \cdot 1 \] This simplifies to: \[ \frac{dy}{dx} = -x \csc x \cot x + \csc x \] ### Step 3: Factor out \( \csc x \) We can factor out \( \csc x \): \[ \frac{dy}{dx} = \csc x (-x \cot x + 1) \] ### Final Answer Thus, the derivative of \( y = x \cdot \csc x \) is: \[ \frac{dy}{dx} = \csc x (1 - x \cot x) \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(xsinx)=……………………. .

d/(dx)(sqrt(x))=………………………. .

d/(dx)(secx) is :

d/(dx)(cotx) is :

(d)/(dx)(x^(x))=?

(d)/(dx)(e^(100)) =…………………

(d)/(dx)|x|

d/(dx) [log(logx)] =

(d)/(dx)sin x

(d)/(dx)(sin120^(@)) =…………