Home
Class 11
MATHS
d/(dx)(x^(5)cotx)=…………………. ....

`d/(dx)(x^(5)cotx)=…………………. .`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx}(x^5 \cot x) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( A \) and \( B \), then the derivative of their product is given by: \[ \frac{d}{dx}(A \cdot B) = A \cdot \frac{dB}{dx} + B \cdot \frac{dA}{dx} \] In this case, let: - \( A = x^5 \) - \( B = \cot x \) Now, we will differentiate each part. ### Step 1: Differentiate \( A = x^5 \) Using the power rule: \[ \frac{dA}{dx} = 5x^{5-1} = 5x^4 \] ### Step 2: Differentiate \( B = \cot x \) The derivative of \( \cot x \) is: \[ \frac{dB}{dx} = -\csc^2 x \] ### Step 3: Apply the Product Rule Now, we can apply the product rule: \[ \frac{d}{dx}(x^5 \cot x) = A \cdot \frac{dB}{dx} + B \cdot \frac{dA}{dx} \] Substituting the values we found: \[ \frac{d}{dx}(x^5 \cot x) = x^5 \cdot (-\csc^2 x) + \cot x \cdot (5x^4) \] ### Step 4: Simplify the Expression Now, we can simplify the expression: \[ \frac{d}{dx}(x^5 \cot x) = -x^5 \csc^2 x + 5x^4 \cot x \] Thus, the final result is: \[ \frac{d}{dx}(x^5 \cot x) = 5x^4 \cot x - x^5 \csc^2 x \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(sin^(n)x)=…………………. .

d/(dx)(sqrt(x))=………………………. .

d/(dx) (2x+5)^5

d/(dx) (3x-5)^2

(d)/(dx)sin(x^(x))

(d)/(dx)(x^(x))=?

(d)/(dx)(x^((1)/(x)))

(d)/(dx)(a^(x)),a>0=

(d)/(dx)(a^(x)+x^(a))=?

(d)/(dx)(sin^(5)x*sin5x)=