Home
Class 11
MATHS
d/(dx)(sin^(n)x)=…………………. ....

`d/(dx)(sin^(n)x)=…………………. .`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \sin^n x \) with respect to \( x \), we will use the chain rule and the power rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have the function \( y = \sin^n x \). ### Step 2: Apply the chain rule According to the chain rule, if we have a function \( f(g(x)) \), then the derivative is given by: \[ \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \] In our case, let \( f(u) = u^n \) where \( u = \sin x \). Thus, we can express the derivative as: \[ \frac{d}{dx} (\sin^n x) = \frac{d}{du} (u^n) \cdot \frac{d}{dx} (\sin x) \] ### Step 3: Differentiate \( f(u) = u^n \) Using the power rule, we find: \[ \frac{d}{du} (u^n) = n u^{n-1} \] Substituting \( u = \sin x \): \[ \frac{d}{du} (\sin^n x) = n \sin^{n-1} x \] ### Step 4: Differentiate \( \sin x \) The derivative of \( \sin x \) is: \[ \frac{d}{dx} (\sin x) = \cos x \] ### Step 5: Combine the results Now, substituting back into our expression from Step 2: \[ \frac{d}{dx} (\sin^n x) = n \sin^{n-1} x \cdot \cos x \] ### Final Result Thus, the derivative of \( \sin^n x \) with respect to \( x \) is: \[ \frac{d}{dx} (\sin^n x) = n \sin^{n-1} x \cos x \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (A) MULTIPLE CHOICE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)sin^(2)x

(d)/(dx)(sin120^(@)) =…………

(d)/(dx)sin(x^(x))

(d)/(dx)sin x

(d)/(dx)(sin^(5)x*sin5x)=

(d)/(dx)[sin^(2)2x] =?

(d)/(dx)(log*sin x)

d/dx (e^(sin√x))

d/(dx) (e^(x sin x)) =

d/(dx) (sin x+ cos x)