Home
Class 11
MATHS
lim(x->0)(sin5x)/(tan3x)...

`lim_(x->0)(sin5x)/(tan3x)`

Text Solution

Verified by Experts

The correct Answer is:
`5/3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin5x)/(tan3x)

Evaluate: lim_(x to 0) (sin x)/(tan x)

Evaluate the following : lim_(x to 0)(sin5x)/(sin3x)

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

lim_(x to 0) (2x)/(tan3x)=?

lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

Evaluate lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

lim_ (x rarr0) (sin (tan x) -tan (sin x)) / (tan ^ (- 1) (sin ^ (- 1) x) -sin ^ (- 1) (tan ^ (- 1) x )) =