Home
Class 11
MATHS
Evaluate : lim(x to 0)(1-cos2x)/(3x^(2))...

Evaluate : `lim_(x to 0)(1-cos2x)/(3x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2} \), we can follow these steps: ### Step 1: Identify the form of the limit When we substitute \( x = 0 \) into the expression, we get: \[ 1 - \cos(2 \cdot 0) = 1 - \cos(0) = 1 - 1 = 0 \] and \[ 3(0)^2 = 0 \] Thus, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. #### Differentiate the numerator: The derivative of \( 1 - \cos(2x) \) is: \[ \frac{d}{dx}(1 - \cos(2x)) = 0 + 2\sin(2x) = 2\sin(2x) \] #### Differentiate the denominator: The derivative of \( 3x^2 \) is: \[ \frac{d}{dx}(3x^2) = 6x \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2} = \lim_{x \to 0} \frac{2\sin(2x)}{6x} \] ### Step 4: Simplify the limit We can simplify the expression: \[ \lim_{x \to 0} \frac{2\sin(2x)}{6x} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{\sin(2x)}{x} \] ### Step 5: Use the limit property We know that: \[ \lim_{x \to 0} \frac{\sin(kx)}{x} = k \quad \text{for any constant } k \] In this case, \( k = 2 \). Therefore: \[ \lim_{x \to 0} \frac{\sin(2x)}{x} = 2 \] ### Step 6: Substitute back into the limit Now substituting this back into our limit: \[ \lim_{x \to 0} \frac{1}{3} \cdot \frac{\sin(2x)}{x} = \frac{1}{3} \cdot 2 = \frac{2}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{3x^2} = \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (1 -cos x)/(x^(2))

Evaluate lim_(x to 0) (1 - cos 2x)/(x)

Evaluate: lim_(x rarr0)(1-cos2x)/(x^(2))

Evaluate : lim_(x rarr0)((1-cos x))/(x^(2))

lim_(x rarr0)(1-cos x)/(x^(2))

Evaluate lim_(xto0)(1-cos2x)/(1-cos4x)

Evaluate lim_(x rarr0)((1-cos x)/(2x^(2)))

lim_(x rarr0)(1-cos2x)/(3tan^(2)x)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

lim_(x rarr0)(1-cos x^(@))/(x^(2))