Home
Class 11
MATHS
Evaluate : lim(x to 0)(2^(2+x)-9)/x....

Evaluate : `lim_(x to 0)(2^(2+x)-9)/x`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{2^{2+x} - 9}{x} \), we can follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression: \[ 2^{2+x} = 2^{2+0} = 2^2 = 4 \] So, the expression becomes: \[ \frac{2^{2+0} - 9}{0} = \frac{4 - 9}{0} = \frac{-5}{0} \] ### Step 2: Analyze the result Since we are dividing by zero, we need to analyze the limit further. The expression \( \frac{-5}{0} \) indicates that the limit approaches either \( +\infty \) or \( -\infty \) depending on the direction from which \( x \) approaches 0. ### Step 3: Use L'Hôpital's Rule Since we have an indeterminate form of type \( \frac{0}{0} \), we can apply L'Hôpital's Rule. This rule states that if the limit results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator. #### Derivative of the numerator: The numerator is \( 2^{2+x} - 9 \). The derivative of \( 2^{2+x} \) with respect to \( x \) is: \[ \frac{d}{dx}(2^{2+x}) = 2^{2+x} \ln(2) \] So, the derivative of the numerator is: \[ \frac{d}{dx}(2^{2+x} - 9) = 2^{2+x} \ln(2) \] #### Derivative of the denominator: The denominator is simply \( x \), and its derivative is: \[ \frac{d}{dx}(x) = 1 \] ### Step 4: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{2^{2+x} - 9}{x} = \lim_{x \to 0} \frac{2^{2+x} \ln(2)}{1} \] ### Step 5: Substitute \( x = 0 \) again Now substitute \( x = 0 \): \[ 2^{2+0} \ln(2) = 4 \ln(2) \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} \frac{2^{2+x} - 9}{x} = 4 \ln(2) \] ### Summary The final answer is: \[ \lim_{x \to 0} \frac{2^{2+x} - 9}{x} = 4 \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate : Lim_(x rarr0)(3^(2+x)-9)/(sin x)

Evaluate : lim_(x rarr0)(27^(x)-9^(x)-3^(x)+1)/(1-cos x)

Evaluate lim_(x to 0) (tan 5x)/(2x)

Evaluate : lim_( x -> 0 ) ( 2^x - 1 )/x

Evaluate: lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

Evaluate : lim_(x rarr0)(2x-1)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))