Home
Class 11
MATHS
If f(x)=(x+cosx)(x-tanx)," find "f^(')(x...

If `f(x)=(x+cosx)(x-tanx)," find "f^(')(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = (x + \cos x)(x - \tan x) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ (uv)' = u'v + uv' \] ### Step-by-Step Solution: 1. **Identify the Functions**: Let \( u(x) = x + \cos x \) and \( v(x) = x - \tan x \). 2. **Differentiate \( u(x) \)**: \[ u'(x) = \frac{d}{dx}(x + \cos x) = 1 - \sin x \] 3. **Differentiate \( v(x) \)**: \[ v'(x) = \frac{d}{dx}(x - \tan x) = 1 - \sec^2 x \] 4. **Apply the Product Rule**: Using the product rule: \[ f'(x) = u'(x)v(x) + u(x)v'(x) \] 5. **Substitute the Derivatives and Functions**: \[ f'(x) = (1 - \sin x)(x - \tan x) + (x + \cos x)(1 - \sec^2 x) \] 6. **Simplify the Expression**: - For the first term: \[ (1 - \sin x)(x - \tan x) = x - \tan x - x \sin x + \sin x \tan x \] - For the second term: \[ (x + \cos x)(1 - \sec^2 x) = (x + \cos x) - (x + \cos x)\sec^2 x \] 7. **Combine and Simplify Further**: Combine both parts: \[ f'(x) = (x - \tan x - x \sin x + \sin x \tan x) + (x + \cos x - (x + \cos x)\sec^2 x) \] 8. **Final Expression**: The final expression for \( f'(x) \) can be simplified further, but this is the general form of the derivative. ### Final Result: \[ f'(x) = (1 - \sin x)(x - \tan x) + (x + \cos x)(1 - \sec^2 x) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin(cosx) than f'(x)=

If f(x)=(x-1)/(x+1), then find f{f(x)}

(x^(3) cosx - 2^(x) tanx)

if f(x)=xe^(x) find f'(x)

If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim_(x to 0)(f'(x))/x is equal to

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

If f(x)=x-9 ,then find f(x)-f(-x)

Find the range of f(x) = (sinx)/(x)+(x)/(tanx) in (0,(pi)/(2))

If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=