Home
Class 11
MATHS
Find (dy)/(dx)" when "y=(x^(5)-cosx)/(si...

Find `(dy)/(dx)" when "y=(x^(5)-cosx)/(sinx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{x^5 - \cos x}{\sin x}\), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form of \(\frac{a}{b}\), then the derivative is given by: \[ \frac{dy}{dx} = \frac{b \frac{da}{dx} - a \frac{db}{dx}}{b^2} \] where \(a = x^5 - \cos x\) and \(b = \sin x\). ### Step 1: Identify \(a\) and \(b\) Let: - \(a = x^5 - \cos x\) - \(b = \sin x\) ### Step 2: Differentiate \(a\) and \(b\) Now, we need to find \(\frac{da}{dx}\) and \(\frac{db}{dx}\). 1. Differentiate \(a\): \[ \frac{da}{dx} = \frac{d}{dx}(x^5) - \frac{d}{dx}(\cos x) = 5x^4 + \sin x \] 2. Differentiate \(b\): \[ \frac{db}{dx} = \frac{d}{dx}(\sin x) = \cos x \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{\sin x \cdot (5x^4 + \sin x) - (x^5 - \cos x) \cdot \cos x}{(\sin x)^2} \] ### Step 4: Simplify the Expression Now, we will simplify the numerator: 1. Expand the terms: \[ \sin x \cdot (5x^4 + \sin x) = 5x^4 \sin x + \sin^2 x \] \[ (x^5 - \cos x) \cdot \cos x = x^5 \cos x - \cos^2 x \] 2. Substitute back into the derivative: \[ \frac{dy}{dx} = \frac{5x^4 \sin x + \sin^2 x - (x^5 \cos x - \cos^2 x)}{(\sin x)^2} \] 3. Combine like terms: \[ = \frac{5x^4 \sin x + \sin^2 x - x^5 \cos x + \cos^2 x}{(\sin x)^2} \] ### Step 5: Final Simplification Notice that \(\sin^2 x + \cos^2 x = 1\): \[ \frac{dy}{dx} = \frac{5x^4 \sin x - x^5 \cos x + 1}{(\sin x)^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{5x^4 \sin x - x^5 \cos x + 1}{\sin^2 x} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (C) TRUE/FALSE QUESTIONS|7 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=(cosx)^(cosx)

Find (dy)/(dx)" when "y=(x+cosx)/(tanx) .

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx), when: y=(logx)^(sinx)

Find (dy)/(dx) , when y=x^(5)+x^(4)+7

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx) , when: y=x^(x)-2^(sinx)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))

Find (dy)/(dx) , when: y=(cosx)^(logx)